PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.) Vol. 66(80), pp. 315 (1999) 

The generalized Baues problem for cyclic polytopes IIChristios A. Athanasiadis, Jörg Rambau and Francisco SantosDepartment of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA and KonradZuseZentrum für Informationstechnik Takustrasse 7, D14195 Berlin, Germany and Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria Santander, E39071, SpainAbstract: Given an affine surjection of polytopes $\pi: P \to Q$, the Generalized Baues Problem asks whether the poset of all proper polyhedral subdivisions of $Q$ which are induced by the map $\pi$ has the homotopy type of a sphere. We extend earlier work of the last two authors on subdivisions of cyclic polytopes to give an affirmative answer to the problem for the natural surjections between cyclic polytopes $\pi:C(n,d')\to C(n,d)$ for all $1\leq d Full text of the article:
Electronic fulltext finalized on: 1 Nov 2001. This page was last modified: 7 Dec 2001.
© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
