ON THE CONVEXITY OF HIGH ORDER OF SEQUENCES

G. Toader

Abstract. We improve some results of Lacković and Simić [2] concerning the weighted arithmetic means that preserve the convexity of high order of sequences.

In [1] and [3] a characterization is given for triangular matrices which define transformations in the set of sequences preserving convexity of order \(r \). In the particular case of weighted arithmetic means, explicit expressions were given before in Lacković and Simić [2]. In this paper we improve the results from [2] generalizing some of the properties that we proved in [7] for the convexity of order two.

At the beginning, let us specify some notation and definitions which will be used throughout the paper.

Let \(a = (a_n) (n = 0, 1, \ldots) \) be a real sequence. The \(r \)-th order difference of the sequence \(a \) is defined by:

\[
\Delta^r a_n = a_n - \Delta^{r-1} a_{n+1} - \Delta^{r-1} a_n \quad (r = 1, 2, \ldots; \ n + 0, 1, \ldots)
\]

Definition 1. A sequence \(a = (a_n) \) is said to be convex of order \(r \) if \(\Delta^r a_n \geq 0 \) for all \(n \in \mathbb{N} \).

Let \(p = (p_n) \) be a sequence of positive numbers. It defines a transformation \(P \) in the set of sequences: any sequence \(a = (a_n) \) is transformed into the sequence \(P(a) = A + (A_n) \) given by:

\[
A_n = \frac{p_0 a_0 + \cdots + p_n a_n}{p_0 + \cdots + p_n} \quad (a = 0, 1, \ldots)
\]

Definition 2. The Transformation \(P \) is said to be \(r \)-convex if the sequence \(A = P(a) \) is convex of order \(r \) for any sequence \(a \) convex of order \(r \).

In [2] the following theorem is given:

\[\text{AMS Subject Classification (1980): Primary 26A 51}\]
Theorem 0. The transformation P is r-convex if and only if the sequence $p = (p_n)$ is given by:

$$p_n = n! \cdot (p_0 + \cdots + p_{r-2}) \prod_{k=r-2}^{n-1} (k + 1)(p_0 + \cdots + p_{r-2}) + (r - 1)p_{r-1}$$

for $n \geq r$, with p_0, \ldots, p_{r-1} arbitrary positive numbers.

Remark. For $a_0 = 0$ and $a_n = (3 + 6n - 2n^2)/3$ if $n \geq 1$, we have $\Delta^3 a_0 = 1$ and $\Delta^3 a_n = 0$ if $n \geq 1$, so that the sequence (a_n) is convex of order 3. Let us choose for $r = 3$: $p_0 = 6$, $p_1 = 1$ and $p_2 = 7/2$. From (3) we get $p_3 = 7/2$ and so from (2), we have $A_0 = 0$, $A_1 = 1/3, A_2 = 1$ and $A_3 = 1$, that is $\Delta^3 A_0 = -1$. Hence the result from Theorem 0 is not valid in this form. To amend it, we begin by putting (3) in a simpler shape. For this we use the following notation:

$$u \choose \alpha = 1, \quad \frac{u(u - 1) \cdots (u - n + 1)}{n!}, \quad \text{for } n \geq 1$$

where u is an arbitrary real number.

Lemma 1. If the transformation P is r-convex, then the sequence (p_n) must be given by:

$$p_n = p_{r-1} \binom{u + n - 1}{n - r + 1} = \left(\frac{u}{n} \right), \quad \text{for } n \geq r$$

where

$$u = \frac{(r - 1) \cdot p_{r-1}}{p_0 + \cdots + p_{r-2}}, \quad p_k > 0 \quad \text{for } k = 0, \ldots, r - 1,$$

Proof. Because (5) is only a transcription of (3) using (4) and (6), the result was proved in [2]. However we sketch here another proof by mathematical induction. As in [2] we use the sequence $a_n = c \cdot n \cdot (n - 1) \cdots (n - r + 2)$ for which we have $\Delta^r a_n = 0$ for any n. Hence it is convex of order r for any real c, and so must be (A_n) too. But this happens if and only if for $c = 1$ we have $\Delta^r A_n = 0$ for any n. For $n = 0$ we get $p_r = p_{r-1}(u + r - 1)/r$ which is (5) for $n = r$. Suppose (5) is valid for $n \leq m$. To obtain A_n for $r \leq n \leq m$, we must calculate:

$$\sum_{k=0}^{n} p_k = \sum_{k=0}^{r-2} p_k + p_{r-1} + \sum_{k=r}^{n} p_k = p_{r-1} \left[\frac{r - 1}{u} + 1 + \sum_{i=0}^{n-r} \left(\binom{u + r + i - 1}{i + 1} \binom{r + i}{i + 1} \right) \right].$$

From this it can be shown, by mathematical induction, that:

$$\sum_{k=0}^{n} p_k = p_{r-1} \frac{n - r + 2}{u} \binom{u + n}{n - r + 2} = \binom{n}{n - r + 1} \cdot \frac{n}{n - r + 2}.$$

So:

$$A_n = \frac{u \cdot (r - 1)!}{u + r - 1} \binom{n}{r - 1}, \quad n \leq m$$
and
\[
A_{m+1} = \frac{p_r - 1}{u} \left(\binom{m}{r-1} \right) \cdot b_k
\]
From $\Delta^r A_{m+1} = 0$, we obtain (5) for $m + 1$, and so for every n.

Lemma 2. If the sequence (a_n) is given by:

\[
a_n = \sum_{k=0}^{n} \binom{n + r - k - 1}{r - 1} \cdot b_k,
\]

then

\[
\Delta^r a_n = b_{n+r} \quad (n = 0, 1, \ldots)
\]

Remark 2. This result is connected with some relations from [1] and [6]. Because any sequence may be put in the form (8), we obtain a representation theorem simpler than that given in [6]:

Corollary 1. The sequence (a_n) is convex of order r if and only if in its representation (8), it has $b_n \geq 0$ for $n \geq r$.

Lemma 3. If the transformation P is r-convex, then for every $n \leq r$:

\[
\sum_{k=0}^{n-1} p_k = n \cdot p_n/u.
\]

Proof. Let (A_n) be represented by:

\[
A_n = \sum_{k=0}^{n} \binom{n + r - k - 1}{r - 1} \cdot c_k.
\]

Then:

\[
a_n = \left(A_n \sum_{i=0}^{n} p_i - A_{n-1} \sum_{i=0}^{n-1} p_i \right) : p_n.
\]

If

\[
q_n = \frac{1}{p_n} \sum_{k=0}^{n-1} p_k
\]

then

\[
\sigma_n = A_n + q_n \cdot (A_n - A_{n-1}) = \sum_{k=0}^{n} \left[\binom{n + r - i - 1}{r - 1} + q_n \cdot \binom{n + r - i - 2}{r - 2} \right] c_i
\]
for \(n \geq 1 \) and \(a_0 = A_0 = c_0 \). So:

\[
\Delta^r a_0 = \sum_{j=0}^{r} (-1)^j \binom{r}{j} a_{r-j} = \\
= \sum_{j=0}^{r-1} \left\{ \sum_{i=0}^{r-1} \left[\binom{2r-j-i-1}{r-1} + q_{r-j} \binom{2r-j-i-2}{r-2} \right] c_i \right\} (-1)^j \binom{r}{j} + (-1)^r c_0 \\
= \sum_{i=0}^{r} \left\{ \sum_{j=0}^{r-1} \left[\binom{2r-j-i-1}{r-1} + q_{r-j} \binom{2r-j-i-2}{r-2} \right] (-1)^j \binom{r}{j} \right\} c_i + \\
+ \left\{ \sum_{j=0}^{r-1} \left[\binom{2r-j-1}{r-1} + q_{r-j} \binom{2r-j-2}{r-2} \right] \right\} (-1)^j \binom{r}{j} + (-1)^r c_0.
\]

But, as it is proved in [5]:

\[
\sum_{j=0}^{n} (-1)^j \binom{n}{j} = 0 \text{ for } p < n
\]

and hence:

\[
\sum_{j=0}^{n} (-1)^j \binom{r}{j} \cdot Q(j) = 0
\]

for any polynomial \(Q \) of degree less than \(n \). So:

\[
(12) \quad \sum_{j=0}^{m} (-1)^j \binom{r}{j} \cdot \binom{m+r-j-1}{r-1} = 0 \text{ for } m = 1, \ldots, r
\]

because:

\[
\sum_{j=0}^{m} (-1)^j \frac{r!}{j! \cdot (r-j)!} \cdot \frac{(m+r-j-1)!}{(r-1)! \cdot (m-j)!} = \frac{r}{m} \sum_{j=0}^{m} (-1)^j \binom{m}{j} \cdot \binom{m+r-j-1}{m-1}
\]

and \(\binom{m+r-j-1}{m-1} \) is a polynomial of deg \(m-1 \) in \(j \). Hence:

\[
\Delta^r a_0 = c_r + \sum_{i=0}^{r} \sum_{j=0}^{r-1} (-1)^j \binom{r}{j} \cdot \binom{2r-j-i-2}{r-2} \cdot q_{r-j} c_i + \\
+ \sum_{j=0}^{r-1} (-1)^j \binom{r}{j} \cdot \binom{2r-j-2}{r-2} \cdot q_{r-j} c_0.
\]

As the coefficient of \(c_r \) is \(1 + q_r > 0 \), \(\Delta^r a_0 \geq 0 \) implies \(\Delta^r A_0 = c_r \geq 0 \) if and only if the coefficients of \(c_i \) are zero for \(i = 0, \ldots, r-1 \). For \(i = r-1 \) we have:

\[
(r-1) \cdot q_r - r \cdot q_{r-1} = 0 \text{ and as (6) means } q_{r-1} = (r-1)/u, \text{ we also have } q_r = r/u.
\]

Assuming (10) valid for \(r-j = 0, \ldots, m-1; m < r-1 \) it may be deduced for \(r-m \), because we have:

\[
\sum_{j=0}^{r-1} (-1)^j \binom{r}{j} \cdot \binom{m+r-j-2}{r-2} \cdot (r-j) = 0, \text{ for } m < r-1
\]
and
\[
\sum_{j=0}^{r-1} (-1)^j \binom{r}{j} \left(\frac{2r - j - 2}{r - 2} \right) (r - j) = 0
\]
which may be verified as in (12).

Theorem 1. The transformation \(P \) is \(r \)-convex if and only if the sequence \((p_n)\) is given by:
\[
p_n = p_0 \cdot \binom{u + n - 1}{n}, \quad \text{for } n \geq 1, \quad \text{with } u = p_1 / p_0.
\]

Proof. Necessity: Lemma 1 and Lemma 3 give the necessary conditions (5) and (10). From (10) we have: \(u = p_1 / p_0 \) for \(n = 1 \), and \(p_2 = u(p_0 + p_1)/2 = p_0 \binom{u+1}{2} \): supposing (13) valid for \(n \leq m < r - 1 \), (10) gives:
\[
p_{n+1} = \frac{u \cdot p_0}{m+1} \sum_{k=0}^{m} \binom{u+k-1}{k} = p_0 \frac{u}{m+1} \binom{u+m}{m} = p_0 \binom{u+m}{m+1}
\]
that is, (13) holds for \(n \leq r - 1 \). Hence, from (5) we also get:
\[
p_n = p_0 \cdot \binom{u + r - 2}{r - 1} \cdot \binom{u + n - 1}{n - r + 1} : \binom{n}{r - 1} = p_0 \cdot \binom{u + n - 1}{n}
\]
for \(n \geq r \).

Sufficiency: with (13), the sequence (2) becomes:
\[
A_n \left[\sum_{k=0}^{n} \binom{u+k-1}{k} a_k \right] : \binom{u+n}{n}
\]
and so we have the relation:
\[
a_n = A_n + n \cdot (A_n - A_{n+1}) : u, \quad \text{for } n > 0.
\]

Taking \(A_n \) of the form (11), from (15) we obtain:
\[
a_n = \sum_{k=0}^{n} \binom{n+r-k-2}{r-2} \cdot \left(\frac{n+r-k-1}{r-1} + \frac{n}{u} \right) c_k.
\]

Because \(\Delta^r A_n = c_{n+r} \), applying to (15) the know relation (see [4]):
\[
\Delta^r (a_n \cdot b_n) = \sum_{i=0}^{r} \binom{r}{i} \Delta^i a_n \cdot \Delta^{r-i} b_{n+i}
\]
we obtain:
\[
\Delta^r a_n = (n+r+u)u^{-1} c_{n+r} - nu^{-1} c_{n+r-1}, \quad n \geq 1.
\]
From the proof of Lemma 3 we have: $\Delta^r a_0 = c_r \cdot (r + u) : u$, that is (17) is valid for $n = 0$ too. Assuming (a_n) given by (8), (9) is valid; thus:

$$
(18) \quad b_r = (r + u)/u, \quad b_{n+r} = (n + r + u)/uc_{n+r} - n/u c_{n+r-1}.
$$

Hence, if $b_n \geq 0$ for $n \geq r$, then also $c_n \geq 0$ for $n \geq r$; that is, if (a_n) is convex of order r, so is (A_n) too.

\textbf{Remark 3.} The sufficiency part of Theorem 1 was also proved in [1]. In what follows we improve also this result. Let us denote by K_r, the set of all sequences convex of order r and by K_r^u the set of all sequences (a_n) with the property that (14) gives a sequence (A_n) in K_r.

\textbf{THEOREM 2.} If $0 < v < u$ then the following strict inclusions hold:

$$
K_r \subset K_r^u \subset K_r^v.
$$

\textbf{Proof.} The first inclusion was proved in Theorem 1. Its strictness follows from (18): the positivity of $c_n(n \geq r)$ does not imply that of b_n. Now suppose (a_n) given by (16) and also by:

$$
a_n = \sum_{k=0}^{n} \binom{n + r - k - 2}{r - 2} \cdot \left(\frac{n + r - k - 1}{r - 1} + \frac{n}{v} \right) \cdot d_k.
$$

So (17) holds and $\Delta^r a_n = (n + r + v)u^{-1}d_{n+r} - nu^{-1}d_{n+r-1}$ that is:

$$
(n + r + v)/vd_{n+r} - nu^{-1}d_{n+r-1} = (n + r + u)u^{-1}c_{n+r} - nu^{-1}c_{n+r-1}
$$

Hence $d_r = \frac{u^{r+u}}{v^{r+v}} c_r$ and generally, by mathematical induction:

$$
d_{r+n} = \frac{u^{r+n} + v^{r+n}}{v^{r+n} + u^{r+n}} \cdot \frac{c_{r+n}}{uv} + \frac{u - v}{uv} \sum_{i=0}^{n-1} \frac{c_{r+i}}{n-i+1} \binom{n}{i} \cdot \left(\frac{v + r + n}{n - i + 1} \right);
$$

that is, $c_n \geq 0$ for $b \geq r$ implies $d_n \geq 0$ for $b \geq r$ and so, if (a_n) is in K_r^u, it is also in K_r^v. That the inclusion $K_r^u \subset K_r^v$ is strict follows also from (19) as above.

\textbf{REFERENCES}

Catedra de Mathematici
Instițialul Politehnic
Chii-Napoca
România

(Received 29 05 1985)