ON DISTANCES IN SOME BIPARTITE GRAPHS

Ivan Gutman

Abstract. Let \(d(v \mid G) \) be the sum of the distances between a vertex \(v \) of a graph \(G \) and all other vertices of \(G \). Let \(W(G) \) be the sum of the distances between all pairs of vertices of \(G \). A class \(\mathcal{C}_k \) of bipartite graphs is found, such that \(d(v \mid G) \equiv 1 \pmod{k} \) holds for an arbitrary vertex of an arbitrary member of \(\mathcal{C}(k) \). Further, for two members \(G \) and \(H \) of \(\mathcal{C}(k) \), having equal cyclomatic number, \(W(G) \equiv W(H) \pmod{2k^2} \).

Introduction

In the present paper we establish certain properties of the vertex distances of some bipartite graphs. If \(G \) is a (connected) graph and \(u \) and \(v \) are its two vertices, then the length of the shortest path which connects \(u \) and \(v \) is denoted by \(d(u, v) \) and is called the distance between \(u \) and \(v \). The sum of the distances between the vertex \(v \) and all other vertices of \(G \) is denoted by \(d(G \mid v) \). The sum of the distances between all pairs of vertices of \(G \) is denoted by \(W(G) \) or simply by \(W \). Hence,

\[
W = W(G) = \sum_{\{u, v\}} d(u, v)
\]

where \(\{u, v\} \) runs over all two-element subsets of the vertex set of \(G \).

We mention in passing that the quantity \(W \) plays some role in chemistry [1]. In the chemical literature \(W(G) \) is called the Wiener number of the graph \(G \).

Let \(G \) be a connected bipartite graph and \(X \) and \(Y \) its two pertinent vertex sets. Then one immediately sees that \(d(u, v) \) is even if both \(u \) and \(v \) belong to either \(X \) or to \(Y \). Otherwise, \(d(u, v) \) is odd. This implies the following consequence.

Lemma 1. \(d(v \mid G) \equiv 1 \pmod{2} \) iff either \(v \in X \) and \(|Y| \) is odd or \(v \in Y \) and \(|X| \) is odd. Further, \(W(G) \equiv 1 \pmod{2} \) iff both \(|X| \) and \(|Y| \) are odd.

In the present paper we prove a number of additional congruence statements for the numbers \(d(v \mid G) \) and \(W(G) \), which hold for the elements of the sets \(\mathcal{C}(h, k) \) and \(\mathcal{C}(k) \).

AMS Subject Classification (1980): Primary 03C50
Definition. Let \(k \) be a positive integer. If \(h > 1 \), then every element of \(C(h, k) \) is a graph obtained by joining the endpoints of a path with \(2k \) vertices to a pair of adjacent vertices of some graph from \(C(h - 1, k) \). The set \(C(1, k) \) consists of one element only—the circuit with \(2k + 2 \) vertices.

It is both consistent and convenient to define \(C(0, k) \) as the one-element set, containing graph on two vertices.

The union of the sets \(C(h, k), h = 0, 1, 2, \ldots \) is denoted by \(C(k) \).

For example, \(C(4, 1) \) consists of eight elements, namely the eight graphs depicted in Fig. 1.

![Graphs](image)

Fig. 1

The basic properties of the above defined classes of graphs are collected in the following lemma.

Lemma 2. If \(G \) is a graph from \(C(h, K) \), then
(a) \(G \) is a connected bipartite graph with \(|X| = |Y| \);
(b) the cyclomatic number of \(G \) is \(h \);
(c) the girth of \(G \) is \(2k + 2 \) and every edge of \(G \) belongs to a \((2k + 2)\)-membered circuit;
(d) \(G \) has \(|G| = 2kh + 2 \) vertices.

The main results

Theorem 1. If graph from \(C(k) \) and \(v \) is its arbitrary vertex, then
\[
d(v \mid G) \equiv 1 \pmod{k},
\]
If, further, k is even, then
\[
d(v \mid G) \equiv 1 \pmod{2k}.
\] (2)

Theorem 2. If G and H are graphs from $\mathcal{C}(h,k)$, then
\[
W(G) \equiv W(H) \pmod{2k^2}.
\] (3)

Proof of Theorem 1. We demonstrate the validity of Theorem 1 for $G \in \mathcal{C}(h,k)$ by induction on h. For $h = 0$, (1) and (2) hold in a trivial manner since then $W = 1$. For the unique graph from $\mathcal{C}(1,k)$, namely the circuit with $2k + 2$ vertices, it is easy to show that $d(v \mid G) = (k + 1)^2$. Whence (1) and (2) are satisfied.

Suppose now that G^* is an element of $\mathcal{C}(h-1,k)$ and that G can be obtained by joining the endpoints u_1 and u_{2k} of a path with $2k$ vertices with the vertices p and q of G^* (see Fig. 2).

![Diagram](image)

Fig. 2

The newly introduced vertices of G are labeled by u_1, u_2, \ldots, u_{2k}.

From the construction of the graph G it is evident that
\[
d(v \mid G) = d(v \mid G^*) + \sum_{i=1}^{2k} d(v, u_i).
\]

Assuming that $d(v, p) < d(v, q)$, we have
\[
\sum_{i=1}^{k} d(v, u_i) = kd(v, p) + k(k + 1)/2,
\]
\[
\sum_{i=k+1}^{2k} d(v, u_i) = k + kd(v, p) + k(k + 1)/2,
\]
and
\[
d(v \mid G) = d(v \mid G^*) + 2kd(v, p) + k(k + 2).
\]

Consequently,
\[
d(v \mid G) \equiv d(v \mid G^*) \pmod{k}
\]
and, if k is even,
\[d(v \mid G) \equiv d(v \mid G^*) \pmod{2k}. \]

Therefore if (1) and (2) hold for the vertex v of G^*, then they also hold for the vertex v of G.

In order to complete the proof of Theorem 1, we have to show that (1) and (2) hold also for the vertices $u_i, i = 1, 2, \ldots, 2k$ of G. Let u stand for one of these vertices. Then
\[d(u \mid G) = \sum_{i=1}^{2k} d(u, u_i) + d(u, p) + d(u, q) + \sum_v d(u, v) \quad (4) \]

with the second summation of the r.h.s. of (4) running over the vertices of G^* different than p and q. The vertices $u_1, u_2, \ldots, u_{2k}, q, p$ form a circuit of size $2k + 2$ in G and therefore
\[\sum_{i=1}^{2k} d(u, u_i) + d(u, p) + d(u, q) = k(k + 1)^2. \]

Further,
\[\sum_v d(u, v) = d(x \mid G^*) - 1 + (|G^*| - 2)d(u, x) \]

where $x = p$ if $d(u, p) < d(u, q)$ and $x = q$ otherwise. According to Lemma 2, $|G^*| = 2k(h - 1) + 2$.

Taking all this into account, eq. (4) becomes
\[d(u \mid G) = d(x \mid G^*) + k(k + 2) + 2k(h - 1)d(u, x), \]

Hence,
\[d(u \mid G) \equiv d(x \mid G^*) \pmod{k} \]

and, if k is even,
\[d(u \mid G) \equiv d(x \mid G^*) \pmod{2k}. \]

This means that if (1) and (2) hold for all vertices of $G^* \in C(h - 1, k)$, then they also for all vertices of $G \in C(h, k)$. Consequently, they hold for all vertices of all graphs from $C(k)$. \hfill \square

Proof of Theorem 2. The sets $C(0, k), C(1, k)$ and $C(2, k)$ contain one element each and therefore for $h = 0, 1$ and 2 Theorem 2 holds in a trivial manner. Direct calculation confirms the validity of Theorem 2 also in the case of $C(3, k)$ (which contains $k + 2$ elements).

In order to complete a proof by induction, assume that (3) is obeyed for all graphs from $C(h - 1, k)$ and in particular for G^* and H^*. Let $G \in C(h, k)$ be obtained from G^* in the previously described way (see Fig. 2). Let $H \in C(h, k)$ be obtained from H^* in a fully analogous manner.
Now, from Fig. 2 we see that
\[W(G) = W(G^*) + k(4k^2 - 1)/3 + k(k + 1) \mid G^* \mid + k[d(| G^*) + d(q \mid G^*)]. \]
(5)

Namely, \(k(4k^2 - 1)/3 \) is the \(W \) number of the path with \(2k \) vertices, where as the sum of the distances between the vertices of \(G^* \) and \(u_1, u_2, \ldots, u_k \) is
\[kd(p \mid G^*) \mid G^* \mid \sum_{i=1}^{k} i \]
and, similarly, the sum of the distances between the vertices of \(G^* \) and \(u_{k+1}, \ldots, u_k \) is
\[kd(q \mid G^*) \mid G^* \mid \sum_{i=0}^{k} i. \]

An analogous equality will hold for the graph \(H \), viz.,
\[W(H) = W(H^*) + k(4k^2 - 1)/3 + k(k + 1) \mid H^* \mid + \]
\[k \mid d(p \mid H^*) + d(q \mid H^*) \mid . \]
(6)

Bearing in mind that by Lemma 2, \(|G^*| = |H^*| \), the identities (5) and (6) yield
\[W(G) - W(H) = W(G^*) - W(H^*) + k[d(p \mid G^*) - d(p \mid H^*) + d(q \mid G^*) - d(q \mid H^*)]. \]

We now have to distinguish between two cases.

Case a: \(k \) is even. Then because of Theorem 1, \(d(p \mid G^*) - d(p \mid H^*) + d(q \mid G^*) - d(q \mid H^*) \) is divisible by \(2k \). Therefore the induction hypothesis that \(W(G^*) - W(H^*) \) is divisible by \(2k^2 \) leads to the conclusion that then also \(W(G) - W(H) \) is divisible by \(2k^3 \).

Theorem 2 follows for the case of even \(k \).

Case b: \(k \) is odd. Then by Theorem 1, \(d(p \mid G^*) - d(p \mid H^*) + d(q \mid G^*) - d(q \mid H^*) \) is divisible only by \(k \) and the above reasoning leads to the conclusion that \(W(G) - W(H) \) is divisible by \(k^3 \). On the other hand, according to Lemma 1, \(W(G) - W(H) \) must be divisible by two. Since \(k^2 \) is assumed to be odd, \(W(G) - W(H) \) must be divisible by \(2k^3 \).

This proves Theorem 2 also for odd values of \(k \). □

Discussion

1° In the set \(C(3,k) \) there exist graphs \(G \) and \(H \) such that \(W(G) - W(H) = 2k^2 \). Therefore \(2k^2 \) is the greatest possible argument in a relation of the type (3) and Theorem 2, is, in a certain sense, the best possible congruence statement for the \(W \) numbers of the members of \(C(h,k) \).

2° Eq. (5) and the fact that \(|G| = 2k(h - 1) + 2 \) imply
\[W(G) - W(G^*) \equiv k(k^2 + 11)/3(\text{mod} \ k^3). \]
This means that by increasing the cyclomatic number by one, W increases by $k(k^2 + 11)/3$ modulo k^2. Since for the (unique) element of $C(0,k)$ it is $W = 1$, one concludes that for the members of $C(h,k)$.

$$W \equiv 1 + hk(k^2 + 11)/3 \pmod{k^2}.$$

Analogously, if k is even, then

$$W \equiv 1 + hk(k^2 + 11)/3 \pmod{2k^2}.$$

3° There is a natural way to generalize the definition of the presently considered bipartite graphs to non-bipartite ones. Instead of the set $C(h,k)$ we may define that the set $C^*(h,k)$ whose elements are constructed by joining the endpoints of a path with $2k - 1$ vertices to a pair adjacent vertices of a graph from $C^*(h-1,k)$. Further, $C^*(1,k)$ would consist of the circuit of the size $2k + 1$.

Unfortunately, neither Theorem 1 nor Theorem 2 could be extended to $C^*(h,k)$, nor any other similar congruence statement could be established.

REFERENCES

Prirodno-matematički fakultet

34000 Kragujevac, pp. 60

Jugoslavija

(Received 16 01 1987)