MERCERIAN THEOREMS FOR BEEKMANN MATRICES

Vlada Vučković

To the memory of B. Martić

Abstract. A matrix $A = (a_{nk})$ is called normal if $a_{nk} = 0$ for $k > n$ and $a_{nn} \neq 0$ for all n. Such a matrix has a normal inverse $A^{-1} = (a_{nk})$. If the inverse A^{-1} of a normal and regular matrix A satisfies the conditions $a_{nk} \leq 0$ for $k < n$ and $a_{nn} > 0$ for all n, we call such a matrix a Beekmann matrix. Beekmann introduced those matrices and proved that for such a matrix A, the matrix $B = (I + \lambda A)/(1 + \lambda)$ is Mercerian for $\lambda > -1$. (I is the identity matrix.)

This paper extends Beekmann's theorem to the case of R^β-Mercerian matrices, $\beta > 0$.

1. Let $A = (a_{nk})$ be a normal matrix, i.e., such that

$$a_{nk} = 0 \text{ for } k > n \quad \text{and} \quad a_{nn} \neq 0 \text{ for all } n. \tag{1.1}$$

Such a matrix has a normal inverse $A^{-1} = (a_{nk})$, so that the transformations

$$y_n = \sum_{k=1}^{n} a_{nk} x_k \ldots, \quad n = 2, \ldots \tag{1.2}$$

and

$$x_n = \sum_{k=1}^{n} a_{nk} y_k \ldots, \quad n = 1, 2, \ldots \tag{1.3}$$

are inverse one to the other.

If the inverse A^{-1} of a normal and regular matrix A satisfies the conditions

$$a_{nk} \leq 0 \text{ for } k < n \quad \text{and} \quad a_{nn} > 0 \text{ for all } n, \tag{1.4}$$

we shall call such a matrix a Beekmann matrix.

Beekmann introduced those matrices in [1] and proved that for such a matrix A, the matrix $B = (I + \lambda A)/(1 + \lambda)$ is Mercerian for $\lambda > -1$. (I is the matrix.)

AMS Subject Classification (1980): Primary 40C05.
The aim of this paper is to extend Beekmann’s theorem to the case of R-Mercerian matrices, $\beta \geq 0$.

2. A sequence s is said to be regularly varying iff

\[
\lim_{n \to \infty} \frac{s(x_n)}{s(n)} = h(t)
\]

exists for every $t > 0$. ($[x]$ is the greatest integer $\leq x$). Such sequences (and functions) were introduced by J. Karamata [2]; today they play an essential role in summability and probability. (1.5) implies that there is a real number β such that $h(t) = t^\beta$. The number β is called the order of s. In addition, a regularly varying sequence of “order 0” (i.e., for which the limit in (1.5) equals 1) is called a slowly varying sequence. It can be proved [2] that every regularly varying sequence s of order $\beta > 0$ can be written in the form

\[
s_n = n^\beta L(n),
\]

where L is a slowly varying sequence.

By R_β, $\beta > 0$, we denote the class of regularly varying sequences of order β, and by R_0 the class of slowly varying sequences.

At last, we say that a matrix A is R_β-regular ($\beta > 0$) iff for every $s \in R_\beta$ and any sequence r

\[
r_n \sim s_n \implies \sum_{k=1}^n a_{nk}r_k \sim s_n, \quad n \to \infty
\]

and it is called R_β-Mercerian iff

\[
\sum_{k=1}^n k = 1^n a_{nk}r_k \sim s_n, \quad n \to \infty
\]

(Obviously, a matrix A is regular iff $r_n \to L$ implies $\sum_{k=1}^n a_{nk}r_k \to L$, and Mercerian iff $\sum_{k=1}^n a_{nk}r_k \to L$ implies $r_n \to L$, $n \to \infty$).

3. The R_β-regularity theorems for matrices were first established by M. Vuilleumier in [6]. The first R_β-Mercerian theorems for regular, invertible triangular matrices were established by S. Zimering in [3].

Using their results, B. Martić [5] proved the following.

Theorem M. Let $A = (a_{nk})$ be normal, nonnegative (i.e. $a_{nk} \geq 0$) and regular matrix which, for some $\gamma > 0$, satisfies the condition

\[
\sum_{k=1}^n a_{nk}k^{-\gamma} = O(n^{-\gamma}), \quad n \to \infty
\]

Then the matrix $B = (I + \lambda A)/(1 + \lambda)$, where I is the unit triangular matrix, is R_0-Mercerian for $|\lambda| < 1$.
Martić supposed \(\sum_{k=1}^{n} a_{nk} = 1 \), but his proof is valid also in case \(\sum_{k=1}^{n} a_{nk} \rightarrow 1 \). Since, in case of a Beekmann matrix \(A \), the conditions (1.4) imply

\[
a_{nk} \geq 0 \text{ for all } k < n \text{ and } a_{nn} > 0,
\]

we can apply Martić’s theorem and obtain

Lemma 3.1. If a Beekmann matrix \(A \) satisfies the condition (3.1) for some \(\gamma > 0 \), then the matrix \(B = (I + \lambda A)/(1 + \lambda) \) is \(R_{0} \)-Mercerian for \(\vert \lambda \vert < 1 \).

Lemma 3.1 reduces the proof of a general \(R_{0} \)-Mercerian theorem for Beekmann matrices to the case \(\lambda \geq 1 \). However, a method used by Tanović-Miller [4] and based upon the relations

\[
\beta_{nk} \leq 0 \text{ for } k < n \text{ and } \beta_{nn} > 0 \text{ for all } n,
\]

\[
\sum_{k=1}^{n} \beta_{nk} \rightarrow 1, \ n \rightarrow \infty
\]

and

\[
\sum_{k=1}^{n} \vert \beta_{nk} \vert^{1-\gamma} = O(n^{-\gamma}), \ n \rightarrow \infty
\]

for the inverse \(B^{-1} \) of \(B \) above supplies readily the proof in this case. Tanović-Miller considered non-negative, normal, normalized \((\sum_{k=1}^{n} a_{nk} = 1) \) matrices \(A \), which satisfy the conditions

\[
a_{n1} > 0, \ a_{n+1,i}a_{nk} \leq a_{ni}a_{n-1,k},
\]

for \(1 \leq k \leq i \leq n - 1 \) and the condition (3.1). and from these derived (3.3)-(3.5). Once one has (3.3)-(3.5), the proof is a straightforward application of Theorem 4.1 of M. Vuillemin in [6].

Thus, if we prove that for a Beekmann matrix \(A \), which satisfies (3.1), the inverse \(B^{-1} \) of \(B = (I + \lambda A)/(1 + \lambda) \) satisfies (3.3)-(3.5) for \(\lambda > 1 \), Lemma 3.1 will be completed for all \(\lambda > -1 \).

4. Our main result is contained in

Theorem 4.1. If \(A \) is a Beekmann matrix and \(B = (I + \lambda A)/(1 + \lambda) \), then \(B \) is a Beekmann matrix for \(\lambda > 0 \).

Proof: Let \(A = (a_{nk}) \), \(A^{-1} = (a_{nk}) \), \(B = (b_{nk}) \) and \(B^{-1} = (\beta_{nk}) \).

Let us remark that the transformations

\[
y_{n} = \sum_{k=1}^{n} b_{nk}x_{k}
\]
and

$$x_n = \sum_{k=1}^{n} \beta_{nk} y_k$$

are inverse.

Since $b_{nk} = \lambda a_{nk}/(I + \lambda)$ for $k < n$ and $b_{nn} = (1 + \lambda a_{nn})/(1 + \lambda)$, $b_{nk} = 0$ for $k > n$, B is normal and obviously regular. Thus B^{-1} exists and it is normal. Moreover, (4.1) and (4.2) are inverse and (1.2) and (1.3) are inverse.

The case $\lambda = 0$ being trivial, let $\lambda > 0$, and let $\varepsilon = (1 + \lambda)/\lambda$. Obviously, $\varepsilon > 1$.

We have for any sequence x,

$$\sum_{k=1}^{n} \alpha_{nk} x_k = \varepsilon b_{nk} - (\varepsilon - 1)x_n;$$

introducing the sequence y, defined by (4.1), this gives

$$\sum_{k=1}^{n} \alpha_{nk} x_k = \varepsilon y_n - (\varepsilon - 1)x_n.$$

If in (1.2) we replace y_n by $\varepsilon y_n - (\varepsilon - 1)x_n$ and use (1.3), from (4.3) we obtain

$$x_n = \varepsilon \sum_{k=1}^{n} \alpha_{nk} y_k - (\varepsilon - 1) \sum_{k=1}^{n} \alpha_{nk} x_k$$

which, using in the second sum on the right side formula (4.2), yields, after some elementary computations,

$$x_n = \sum_{k=1}^{n} \left\{ \varepsilon \alpha_{nk} - (\varepsilon - 1) \sum_{i=k}^{n} \alpha_{ni} \beta_{ik} \right\} y_k.$$

From this and (4.2) we obtain at once

$$\beta_{nk} = \varepsilon \alpha_{nk} - (\varepsilon - 1) \sum_{i=k}^{n} \alpha_{ni} \beta_{ik},$$

and, in particular, for $k = 1, 2, \ldots, n$,

$$\beta_{kk} = \{\varepsilon/(1 + (\varepsilon - 1)\alpha_{kk})\} \alpha_{kk}$$

and for $k \geq 2$

$$\beta_{k,k-1} = \varepsilon \alpha_{k,k-1}/(1 + (\varepsilon - 1)\alpha_{kk})(1 + (\varepsilon - 1)\alpha_{k-1,k-1}).$$

Now, solving (4.4) for β_{nk} and using (4.5) we obtain, for $k = 1, 2, \ldots, n - 2$

$$\beta_{nk} = \frac{\varepsilon}{(1 + (-1)\alpha_{nn})(1 + (\varepsilon - 1)\alpha_{kk})} \alpha_{nk} - \frac{\varepsilon - 1}{1 + (\varepsilon - 1)\alpha_{nn}} \sum_{i=k+1}^{n-1} \alpha_{ni} \beta_{ik}.$$
Since \(\alpha_{kk} > 0 \) and \(\alpha_{k,k-1} \leq 0 \) we conclude from (4.5) and (4.6) (with \(k = n \)) that \(\beta_{nn} > 0 \) for all \(n \) and \(\beta_{n,n-1} \leq 0 \), for \(n \geq 2 \). Then, from (4.7) we conclude: if \(\beta_{k+1,k}, \beta_{k+2,k}, \ldots, \beta_{n-1,k} \) are all \(\leq 0 \) for \(k < n \), then \(\beta_{nk} \leq 0 \) too, for \(k = 1, 2, \ldots, n - 2 \), which completes the proof of the theorem.

Corollary 4.1.1. Let \(A \) be a Beekmann matrix which, for some \(\gamma > 0 \), satisfies the condition (3.1). Then \(B^{-1} \), the inverse of \(B = (I + \lambda A)/(1 + \lambda) \), satisfies the condition (3.5) for \(\lambda \geq 0 \).

Proof. We use notations of Theorem 4.1. If \(D \) is any matrix, by \((D)_{nk}\) we denote its element in \(n \)-th row and \(k \)-th column. \(\delta^k_n \) denotes the Kronecker symbol (= 1 if \(k = n \), 0 otherwise).

Since
\[
\sum_{i=1}^{n} b_{ni} \beta_{ik} = (BB^{-1})_{nk} = \delta^k_n,
\]
we have, for \(k < n \),
\[
\sum_{i=1}^{n-1} b_{ni} \beta_{ik} = -b_{nn} \beta_{nk},
\]
and, since \(\beta_{nn} = 1/b_{nn} \),
\[
(4.8) \quad -\beta_{nk} = \beta_{nn} \sum_{i=1}^{n-1} b_{ni} \beta_{ik}.
\]

Taking into account the relations \(\beta_{ik} \leq 0 \) for \(i \neq k \) (\(B \) is Beekmann, by Theorem 4.1), \(b_{ni} \geq 0 \) and \(\beta_{kk} > 0 \), we obtain from (4.8), for \(k < n \)
\[
(4.9) \quad -\beta_{nk} \leq \beta_{nn} b_{nk} \beta_{kk} \leq b_{nk} (1 + \lambda)^2.
\]

since
\[
\beta_{nn} \beta_{kk} = \frac{1 + \lambda}{1 + \lambda a_{nn}} \cdot \frac{1 + \lambda}{1 + \lambda a_{kk}} \leq (1 + \lambda)^2.
\]

Using the relations between the elements of \(A \) and \(B \), the fact that \(B \) is Beekmann, (3.1) and (4.9), we have:
\[
\sum_{k=1}^{n} |\beta_{nk}| k^{-\gamma} = \sum_{k=1}^{n-1} -\beta_{nk} k^{-\gamma} + \beta_{mn} n^{-\gamma} \leq (1 + \lambda)^2 \sum_{k=1}^{n-1} b_{nk} k^{-\gamma} + \frac{1 + \lambda}{1 + \lambda a_{nn}} n^{-\gamma}
\]
i.e.
\[
\sum_{k=1}^{n} |\beta_{nk}| k^{-\gamma} \leq \lambda (1 + \lambda) \sum_{k=1}^{n-1} a_{nk} k^{-\gamma} + O(n^{-\gamma}),
\]
which, by (3.1), gives (3.5).

Corollary 4.1.2. The matrix \(B^{-1} \) of Theorem 4.1 satisfies (3.4).
Proof. From (4.9) follows

\[|\beta_{nk}| \leq (1 + \lambda)^2 b_{nk}, \ k < n \]

i.e., (since \(B \) is regular) for every fixed \(k \), \(|\beta_{nk}| \to 0, \ n \to \infty \).

Also, by the same inequality and the fact that

\[
\beta_{nn} = 1/b_{nn} = \frac{1 + \lambda}{1 + \lambda a_{nn}} \sum_{k=1}^{n} |\beta_{nk}| < (1 + \lambda)^2 \sum_{k=1}^{n-1} b_{nk} + \frac{1 + \lambda}{1 + \lambda a_{nn}}
\]

and since \(B \) is regular, there is \(M > 0 \) such that

\[
(4.10) \quad \sum_{k=1}^{n} |\beta_{nk}| \leq M.
\]

Set now in (4.1) \(x_k = 1 \) for all \(k \), so that \(y_n = \sum_{k=1}^{n} b_{nk} \). Then, by (4.2)

\[
1 = \sum_{k=1}^{n} \beta_{nk} y_k
\]

and so

\[
1 - \sum_{k=1}^{n} \beta_{nk} = \sum_{k=1}^{n} \beta_{nk} (y_k - 1).
\]

Since \(y_k - 1 \to 0, \ k \to \infty \), by (4.10) and the fact that, for fixed \(k \), \(|\beta_{nk}| \to 0, \ n \to \infty \) follows \(\lim_{n \to \infty} \sum_{k=1}^{n} \beta_{nk} = 1 \) in usual way.

Remark. A consequence of the content of Corollary 4.1.2 is that \(B^{-1} \) is a regular matrix. Contrary to this, \(A^{-1} \) does not need to be regular. For example, for the matrix \(A = (1/n)_{k \leq n} \) of arithmetic means, \(a_{nk} = 0 \) for \(k \leq n - 2, \ a_{n,n-1} = -(n-1), \ a_{nn} = n \) and \(\sum_{k=1}^{n} |a_{nk}| = 2n - 1 \) is not bounded!

5. We are able now to prove the extensions of Beekmann’s Mercerian Theorem to regularly varying functions.

Theorem 5.1. Let \(A \) be Beekmann matrix, such that, for some \(\gamma > 0 \),

\[
(5.1) \quad \sum_{k=1}^{n} a_{nk} k^{-\gamma} = O(n^{-\gamma}), \ n \to \infty.
\]

Then, for \(\lambda > -1 \), the matrix \(B = (I + \lambda A)/(1 + \lambda) \) is \(R_0 \)-Mercerian.

Proof. Case \(|\lambda| < 1 \) by Lemma 3.1. For \(\lambda \geq 1 \), by Theorem 4.1 and its Corollaries, \(B^{-1} \), the inverse of \(B \), satisfies all the conditions (3.3) – (3.5). By the remark at the end of section 3, \(B \) is \(R_0 \)-Mercerian.
Since every regularly varying sequence \(s \) of order \(\beta > 0 \), satisfies (1.6), applying Theorem 5.1 to the sequence \(\{s_n/n^3\} \), we obtain, in a similar way as Martić in [5],

Theorem 5.2. Let \(A \) be a Beekmann matrix such that there are two numbers \(\alpha \) and \(\beta \), \(0 < \alpha < \beta \), for which

\[
\sum_{k=1}^{n} a_{nk} \left(\frac{k}{n} \right)^{\alpha} \rightarrow A_\alpha, \quad \text{and} \quad \sum_{k=1}^{n} a_{nk} \left(\frac{k}{n} \right)^{\beta} \rightarrow A_\beta, \quad n \to \infty.
\]

Then, for every \(\lambda \) such that \(1 + \lambda A_\alpha > 0 \) and \(1 + \lambda A_\beta > 0 \), the matrix \(B_\beta = (I + \lambda A)/(1 + \lambda A) \) is \(R_\beta \)-Mercerian.

One should remark that conditions \(1 + \lambda A_\alpha > 0 \) and \(1 + \lambda A_\beta > 0 \) imply one another, depending on the sign of \(\lambda \).

References

University of Notre Dame
Department of Mathematics
Notre Dame, Indiana 46556
U.S.A.

(Received 16/12/1985)