ON CERTAIN CONDITIONS WHICH REDUCE
A FINSLER SPACE OF SCALAR CURVATURE TO
A RIEMANNIAN SPACE OF CONSTANT CURVATURE

B.B. Sinha and A.S. Matharoo

Abstract. We give certain conditions which reduce a Finsler space of scalar curvature to
a Riemannian space of constant curvature.

1. Preliminaries. Let F_n be an n-dimensional Finsler space with the
fundamental functional $L(x, y)$, the positive definite metric tensor $g_{ij} = 1/2\delta_i^j L^2$
and the angular metric tensor $h_{ij} = g_{ij} - l_i l_j$, where $l_i = \delta_i^j L$, $\delta_i = \delta/\delta y^i$.

For a Cartan connection Γ, h- and ν-covariant derivatives of a finsler tensor
field X_j^i are denoted by X_j^i and X_j^i. The h, $h \nu$- and ν-curvature tensors of Γ
are R_{hjk}^i, P_{hjk}^i and S_{hjk}^i and the (ν) h, (h) $h \nu$- and (ν) $h \nu$-torsion tensors of Γ
are R_{ijk}^h, C_{ijk}^h and P_{ijk}^h respectively. On the otherhand H_{ijk}^h and H_{ijk}^h
tensors and $(\nu) h$-torsion, tensors of Berwald connection B_T respectively.

The following relations are well known [4]:

\begin{align}
(1.1) & \quad H_{ijk}^h = \delta_i^j H_{jk}^h \\
(1.2) & \quad P_{ijk} = C_{ijk}^h \nu,
\end{align}

where the index ν stands for transvection by y and $C_{ijk} = 1/2\delta_i^j g_{ij}$

\begin{align}
(1.3) & \quad H_{ijk}^h = H_{ijk}^h = R_{ijk}^h = R_{ijk}^h, \\
(1.4) & \quad H_{ijk}^h = R_{ijk}^h - C_{ij}^h P_{ijk} + \{P_{ijk} - P_{ij}^h P_{jk}^h - j | k \},
\end{align}

where $j | k$ means interchange of indices j, k in the foregoing terms.

A hypersurface of F_n defined by the equation $L(x, y) = 1$, where the point
$x = (x^i)$ is fixed and y^i are variables, is called indicatrix. We denote by p
the projection of the tensor of the Finsler spaces on the indicatrix. For example, the

\textit{AMS Subject Classification (1980)}: Primary 53C60
projection of the tensor T^i_j of type $(1,1)$ of F_n on the indicatrix is $p \cdot T^i_j = h^i \cdot T^i_j \cdot h^i_j$, where $h^i = \delta^i_a - l^i_l a, l^i = g^i h^i_j = L^{-1} y^i$. A tensor T satisfying $p \cdot T = T$ is called an indicatrix tensor. We have

\begin{align}
(1.5) \quad & a) \ p \cdot t^i = p \cdot t_i = 0, & b) \ p \cdot \delta^i_j = h^i_j, \\
& c) \ p \cdot \delta^i_k h^j_i = p \cdot h^j_i \big|_k = 0, & d) \ p \cdot \delta^i_k h^i_j = 2 C_{ijk}.
\end{align}

2. A Finsler space of scalar curvature. A Finsler space of scalar curvature is characterized by [6] any one of the following equations:

\begin{align}
(2.1a) \quad & H^i_j \equiv L(Kl_j + K_j/3)h^i_k - j \mid k, \\
& H^i_{hjk} = \{t_h(Kl_j + K_j/3) + K^h_{hj} + 2K^h_{hj}/3 + K_{hj}/3\}h^i_k \\
(2.1b) \quad & + l^i(Kl_k + K_k/3)h^j_h + h^i_k h^i_j K_k/3 - j \mid k
\end{align}

where $K_k = L \delta k K, K_{hj} = L p \cdot \delta_k K = K_{jh}$. Specially, if the scalar K is constant, then the space is called a Finsler space of constant curvature.

Proposition 2.1. A Finsler space $F_n(n \geq 3)$ of scalar curvature K satisfies

\begin{equation}
K_{ijk} + K^h_{hjk} - i \mid j = 0,
\end{equation}

where $K_{ijk} = L p \cdot \delta_i K_{jk}$.

Proof. From (1.5) and (2.1b), we have

$$L p \cdot \delta_m H^i_{hjk} = (h^i_m K_j/3 + K^m h^i_j + 2LK^h_{hjm} + 2K^h_{hj}/3 + K^l_{hj}/3)h^i_k$$
$$+ h^i_m K_k h^i_j/3 + h^i_k h^i_j K_k/3 - j \mid k$$

Considering the skew-symmetric part of the above equation in the indices h and m and using the fact $\delta_m H^i_{hjk} = \delta_k H^i_{hjk}$, we get

$$[(K^m h^i_j + 2K^l h^i_j/3 + K^i_{m hj}/3)h^i_k - j \mid k] - h \mid m = 0$$

which is simplified as

\begin{equation}
[(K^m h^i_j + K^m_{hj})h^i_k - j \mid k] - h \mid m = 0
\end{equation}

Contracting (2.3) in indices i and k, we get (2.2).

Remark 2.1. Proposition 2.1, and the definition of K_j, K_{hj} and K_{ijk} imply that when any one of them is zero, then the other two are automatically zero. $K_j = 0$ means that K is independent of y. Thus K is constant (Matsumoto [4, Prop. 26.1]). If for a Finsler space F_n of scalar curvature any one of the tensors K_i, K_{hj} and K_{ijk} vanishes, F_n is of constant curvature.

Proposition 2.2. A Finsler space F_n of scalar curvature K with $P_{hij0} = 0$ satisfies

\begin{equation}
h_{ik}(3K K_{jm} - K_{jK_m}) + h_{jk}(3K K_{im} - K_{kK_m}) - h \mid m = 0
\end{equation}
Proof. A Finsler space F_n of scalar curvature K satisfies [7]
\begin{equation}
L^{-1} P_{hij0} + L K C_{hij} + (K_h h_{ij} + K_i h_{hj} + K_j h_{hi})/3 = 0.
\end{equation}
Since, $P_{hij0} = 0$, (2.5) leads to
\begin{equation}
L K C_{hij} + (K_h h_{ij} + K_i h_{hj} + K_j h_{hi})/3 = 0.
\end{equation}
Differentiating the equation above partially with respect to y^m and applying p to the resulting equation and using (1.5) we get
\begin{align*}
3 L K C_{hij} + 3 L^2 K p \cdot \delta_m C_{hij} + (2 L C_{ijm} K_h + h_{ij} K_{hm} + 2 L C_{ijm} K_i \\& h_{jm} K_j + h_{ij} K_{jm}) &= 0.
\end{align*}
Considering skew symmetric part of the above equation in the indices h and m, we get
\begin{equation}
L C_{hij} K_m + h_{jh} K_{im} + h_{hi} K_{jm} - h | m = 0.
\end{equation}
By virtue of (2.6) and (2.7), we obtain (2.4).

A Riemannian space is characterized by [4]:
\begin{equation}
C_{hij} = 0.
\end{equation}

Theorem 2.3. A Finsler space F_n of non-vanishing scalar curvature K with $P_{hij0} = 0$ is a Riemannian space of constant curvature if
\begin{equation}
3 K K_{ij} - K^{m} K_{m} = 0,
\end{equation}
where $K^i = g^{im} K_{mj}$, $K^i = g^{im} K_{m}$.

Proof. Transvecting (2.4) by $h^h = g^{ih} - i h^i$ we get
\begin{align*}
(n - 1)(3 K K_{jm} - K_j K_m) - (3 K K^* - K^* K^*_j) h_{jm} &= 0
\end{align*}
which leads to
\begin{equation}
3 K K_{jm} - K_j K_m = 0
\end{equation}
because of (2.9).

Differentiating (2.10) partially with respect to y^h and applying p to the resulting equation, we have
\begin{equation}
3 K_h K_{jm} + 3 K K_{hjm} - K_h j K_m - K_j K_{hm} = 0
\end{equation}
Equations (2.10) and (2.11) give $K_m K_h K_j + 9 K^2 K_{hjm} = 0$ which yields
\begin{equation}
K_{hjm} - h | j = 0 \quad K \neq 0,
\end{equation}
By virtue of (2.2) and (2.12), we get $K_h h_{jm} - h | j = 0$ which shows that
\begin{equation}
K_h = 0.
\end{equation}
On account of remark 2.1 and equations (2.6), (2.8) and (2.13), we have the theorem.

Corollary 2.4. A Finsler space F_n of non-vanishing constant curvature $(K_j = 0, K \neq 0)$ with $P_{hj|0} = 0$ is a Riemannian space of constant curvature.

Proof. Since F_n is of constant curvature, we get $K_j = K_{hj} = 0$. Thus all the conditions of theorem 2.3 are fulfilled. Hence the corollary.

The h-curvature tensor of Rund connection is defined as follows [4]:

$$K^i_{hjk} = R^i_{hjk} - C^i_{hr}R^r_{jk}. \tag{2.14}$$

Theorem 2.5. A Finsler space $F_n(n \geq 3)$ of non-vanishing scalar curvature K is a Riemannian space of constant curvature if the h-curvature tensor of Berwald and Rund coincide.

Proof. From (1.4) and (2.14), we obtain $P^h_{ij|k} - P^h_{ji}P^r_{k} - j | k = 0$ which implies $P_{hijk} - P_{hj}P^r_{ki} - j | k = 0$. Considering symmetric part of the above equation in i and h, we have

$$P_{thjk} - \sum| k = 0 \tag{2.15}$$

Also from (1.4), we get

$$H_{thjk} + H_{hijk} = -2C_{ih}R^r_{jk} + 2(P_{thj} - j | k) \tag{2.16}$$

Substitution of (2.15) in (2.16) gives

$$H_{thjk} + H_{hijk} = -2C_{hi}R^r_{jk} \tag{2.17}$$

By virtue of (2.1a) and (2.1b), we obtain

$$p \cdot H^i_{jk} = LK_j h^i_k / 3 - j | k \tag{2.18a}$$
$$p \cdot H_{hijk} = (Kh_j + K_{hj} / 3)h_i - j | k \tag{2.18b}$$

Applying indicatric projection $p \cdot$ on (2.17) and using (2.18a) and (2.18b) we get

$$K_{ij}h_{hk} + K_{hj}h_{ik} - j | k = -2LK_jC_{hi} - j | k. \tag{2.19}$$

Since $P_{thj|0} = 0$ because of (2.15), using (2.5) and (2.19), we have

$$3K_{K_{ij}} - 2K_jK_j h_{hk} + 3K_{K_{hj}} - 2K_hK_j h_{ik} - j | k = 0 \tag{2.20}$$

(2.4) and (2.20) lead to $K_iK_j h_{hk} + K_hK_j h_{ik} - j | k = 0$. Transvecting the last relation by h^h, we get

$$(n - 1)K_iK_j - KmK_{m}h_{ij} = 0 \tag{2.21}$$
Transvecting the relation above by $K^i K^j$, we obtain $(n - 2)K^m K_m K^k K_k = 0$, which implies $K^m K_m = 0$. Hence $K_i = 0$ identically. By definition $K_{h j} = 0$ also. Thus all the conditions of theorem 2.3 are satisfied. Hence the Theorem.

T-tensor T_{hijk} is defined by [3]

$$T_{hijk} = LC_{hijk} + l_h C_{ijk} + l_i C_{hjk} + l_j C_{hi k} + l_k C_{h ijk}. \tag{2.22}$$

Ikeda [2] has proved that Finsler tensor field u^i satisfies

$$u^j_{ij0} - u^i_{ij0} - u^j_{i j0} \tag{2.23}$$

Theorem 2.6. A Finsler space of non-vanishing scalar curvature with vanishing T-tensor and $P_{hij0} = 0$ is a Riemannian space of constant curvature if $C_{hijk}|_{0} = 0$.

Proof. Since $T = 0$, (2.2) implies

$$LC_{hijk} = -l_h C_{ijk} - l_i C_{hjk} - l_j C_{hi k} - l_k C_{h ijk}. \tag{2.24}$$

Differentiating (2.24) h-covariantly and transvecting the resulting equation by y and using (2.23), we obtain

$$L(P_{hij} - C_{hijk}) = l_h P_{ijk} - l_i P_{hjk} - l_j P_{hi k} - l_k P_{h ijk}.$$

Differentiating the equation above h-covariantly once again and transvecting the resulting equation by y and using (2.23), $P_{hij0} = 0$ and $C_{hijk}|_{0} = 0$, we obtain

$$P_{hijk} = 0. \tag{2.25}$$

From (2.15) - (2.21) and (2.25) we have $K_i = 0$ and consequently $K_{h j} = 0$.

Thus the theorem follows in light of Theorem 2.3.

Acknowledgement. The second author is thankful to C.S.I.R. for their financial support.

References

Department of Mathematics
Banaras Hindu University
Varanasi, 221005
India

(Received 03 07 1985)