SOME RELATIONS FOR GRAPHIC POLYNOMIALS

Ivan Gutman

Abstract. Let G be a graph and A and B its two subgraphs with disjoint vertex sets. A number of results is obtained, relating the characteristic, matching and μ-polynomials of G, $G-A$, $G-B$ and $G-A-B$.

Introduction. In the present paper we shall consider simple graphs without loops and multiple edges, and three polynomials associated with them. These are the characteristic [2], the matching [1,3] and the μ-polynomial [5]. They will be denoted by $\varphi(G)$, a $\alpha(G)$ and $\mu(G)$, respectively with G standing for the corresponding graph.

Let G be a graph with n vertices, v_1, v_2, \ldots, v_n. Its adjacency matrix A is square matrix of order n whose element in the i-th row and j-th column is equal to one if the vertices v_i and v_j are adjacent, and is equal to zero otherwise. The characteristic polynomial of A is called the characteristic polynomial of the respective graph [2]. Hence, if I is the unit matrix of order n then $\varphi(G) = \varphi(G, x) = \det(xI - \text{adj}(A))$.

Denoting by $m(G, k)$ the number of selections of k independent edges of the graph G (i. e. the number of its k-matchings), the matching polynomial of G is defined as [1,3]

$$\alpha(G) = \alpha(G, x) = x^n + \sum_{k=1}^{n/2} (-1)^k m(G, k) x^{n-2k}.$$

If the graph G is acyclic, then by definition, $\mu(G) = \alpha(G)$. Since the characteristic and the matching polynomial of an acyclic graph coincide $[1,3,4]$, in this case we also have $\mu(G) = \varphi(G)$.

In order to define the μ-polynomial of a cyclic graph, suppose that G possesses r ($r > 0$) circuits Z_1, \ldots, Z_r, and associate a parameter t_i with $Z_i, i = 1, \ldots, r$.

AMS Subject Classification (1980): Primary 05C50
Then [5]

\[
\mu(G) = \alpha(G) + 2 \sum_i t_i \alpha(G - Z_i) + 4 \sum_{i<j} t_i t_j \alpha(G - Z_i - Z_j) \\
- \cdots + (-2)^r t_1 t_2 \cdots t_r \alpha(G - Z_1 - Z_2 - \cdots - Z_r)
\]

(1)

with the following conventions:

(a) If among the circuits \(Z_{i_1}, Z_{i_2}, \ldots, Z_{i_k}\) of \(G\) at least two of them possess at least one common vertex, then \(\mu(G - Z_{i_1} - Z_{i_2} - \cdots - Z_{i_k}) = 0\).

(b) If the circuits \(Z_{i_1}, Z_{i_2}, \ldots, Z_{i_k}\) embrace all the vertices of \(G\), then \(\mu(G - Z_{i_1} - Z_{i_2} - \cdots - Z_{i_k}) = 1\).

The \(\mu\)-polynomial is a generalization of both the matching and the characteristic polynomial. From (1) it is evident that for \(t_1 = t_2 = \cdots = t_r = 0\), \(\mu(G)\) reduces to a \(\alpha(G)\). It can be shown [5] that for \(t_1 = t_2 = \cdots = t_r = 1\), \(\mu(G)\) coincides with \(\varphi(G)\).

The concept of the \(\mu\)-polynomial was developed in connection with some problems of theoretical chemistry. The chemical applications of the \(\mu\)-polynomial are elaborated in [5], where a number of its basic properties has also been established. Among them we shall need the following three.

If the graph \(G\) is composed of components \(G_1, G_2, \ldots, G_c\), then we shall write \(G = G_1 + G_2 + \cdots + G_c\).

Lemma 1. \(\mu(G_1 + GZ + \cdots + G_c) = \mu(G_1) \mu(G_2) \cdots \mu(G_c)\).

Lemma 2. Let \(G\) be an arbitrary graph and \(u\) its vertex. Then

\[
\mu(G) = x \mu(G - u) - \sum_j \mu(G - u - v_j) - 2 \sum_k t_k \mu(G - Z_k).
\]

(2)

The first summation on the r. h. s. of (2) goes over all vertices \(v_j\) which are adjacent to \(u\); the second summation goes over all circuits \(Z_k\) which contain the vertex \(u\).

Lemma 3. Let \(e\) be an edge of \(G\), connecting the vertices \(u\) and \(v\). If \(e\) does not belong to any circuit of \(G\), then \(\mu(G) = \mu(G - e) - \mu(G - u - v)\).

For the characteristic and matching polynomial of a graph and some of its subgraphs two peculiar relations hold.

Lemma 4. If \(G\) is a graph and \(u\) and \(v\) are two distinct vertices, of \(G\) then

\[
\varphi(G - u) \varphi(G - v) - \varphi(G) \varphi(G - u - v) = \left[\sum_{i} \varphi(G - P_i) \right]^2
\]

(3)

\[
\alpha(G - u) \alpha(G - v) \alpha(G - u - v) = \sum_{i} [\alpha(G - P_i)]^2
\]

(4)
In both expressions P_1 denotes a path and the summations go over all paths in G, which connect the vertices u and v.

Formula (3) is a graph-theoretical reinterpretation of a long-known result for determinants [7], whereas (4) was discovered by Hellmann and Lieb [6].

As a matter of fact, in the theory of determinants the following result of Jacobi from 1833 is known [7, Theorem 1.5.3]. Let

$$D = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$$

be a determinant of order n. Let M be a k-rowed minor of D, M^* the corresponding minor of the adjugate of D and \tilde{M} the cofactor of M in D. Then $M^* = D^{k-1}\tilde{M}$. For $k = 2$ we get as a special case of the above equation

$$\begin{vmatrix} A_{uu} & A_{uv} \\ A_{vu} & A_{vv} \end{vmatrix} = D \cdot D_{uv,uv}$$

where A_{uv} is the cofactor of the element a_{uv} and $D_{uv,uv}$ is the determinant of order $n-2$ obtained when the r-th and the s-th rows and columns are deleted from D. This yields $A_{uu}A_{vv} - D \cdot D_{uv,uv} = (A_{uv})^2$.

Suppose now that D is equal to $\det(xI - A)$. Then from the definition of the characteristic polynomial of a graph, we immediately have $D = \phi(G)$, $A_{uu} = \phi(G - u)$, $A_{vv} = \phi(G - v)$ and $D_{uv,uv} = \phi(G - u - v)$. The fact that

$$A_{uv} = \sum_i \phi(G, P_i)$$

is just another formulation on Coates' formula [2, p. 47].

The main results. In this section we report some relations for the μ-polynomial, whose form is similar to that of eqs. (3) and (4). The following two theorems and their corollaries are our main results.

Let A, B, X and Y be rooted graphs. Let H be another graph and u and v two distinct vertices of H. Construct the graph G by identifying the roots of A and X with u, and by identifying the roots of B and Y with v (Fig. 1).
Theorem 1. Let A^i, B^j, X^i and Y^j denote the subgraphs obtained by deleting the rooted vertex from A, B, X and Y, respectively. Then,

$$
\mu(G - A)\mu(G - B) - \varphi(G)\varphi(G - A - B) = \mu(A^i)\mu(B^j)\mu(X^i)\mu(Y^j) - [\mu(H - u)\mu(H - v) - \mu(H)\mu(H - u - v)].
$$

(5)

Corollary 1.1.

$$
\varphi(G - A)\varphi(G - B) - \varphi(G)\varphi(G - A - B) = [\varphi(A^i)\varphi(B^j)]^{-1} \left[\sum_i \varphi(G - R_i) \right]^2.
$$

Corollary 1.2.

$$
\alpha(G - A)\alpha(G - B) - \alpha(G)\alpha(G - A - B) = [\alpha(A^i)\alpha(B^j)]^{-1} \sum_i \alpha(G - P_i)\alpha(G - B - P_i).
$$

Corollary 1.3.

The summations in Corollaries 1.1–1.3 go over all paths P_i of the graph G, connecting the vertices u and v.

Theorem 2. Let H be a graph and u and v two distinct vertices of H. If u and v are connected by a unique path P, then

$$
\mu(H - u)\mu(H - v) - \mu(H)\mu(H - u - v) = [\mu(H - P)]^2.
$$

(6)

Corollary 2.1. If the vertices u and v of the graph G (from Theorem 1) are connected by a unique path P, then

$$
\mu(G - A)\mu(G - B) - \mu(G)\mu(G - A - B) = \mu(G - A - P)\mu(G - B - P).
$$

Proof. In order to prove Theorem 1 we need an auxiliary result.

Lemma 5. Let R_1, R_2, \ldots, R_m be rooted graphs and u_1, u_2, \ldots, u_m, the corresponding roots. Construct the graph R by identifying the roots of all R_i, $i = 1, 2, \ldots, m$. The vertex so obtained will be denoted by u. Then

$$
\mu(R) = \mu(R_1)\mu(R_2)\cdots\mu(R_m) + \mu(R'_1)\mu(R_2)\cdots\mu(R'_m) +
\cdots +
\mu(R'_1)\mu(R_2)\cdots\mu(R'_m) - (m - 1)\mu(R'_1)\mu(R'_2)\cdots\mu(R'_m)
$$

(7)

where $R'_i = R_i - u_i, i = 1, 2, \ldots, m$.

Proof. Since the vertex u is a cutpoint in R, it cannot happen that a circuit of R lies partially in R_i and partially R_j, $i \neq j$. Then applying Lemma 2 we get

$$
\mu(R) = x\mu(R - u) - \sum_{i=1}^m \sum_{j \neq i} \mu(R - u - v_{j_i}) - 2 \sum_{i=1}^m \sum_{k_i} t_{k_i}\mu(R - Z_{k_i})
$$

(8)

where v_{j_i} denotes a vertex of R_i which is adjacent to u_i and Z_{k_i} denotes a circuit of R_i which contains the vertex u_i; the appropriate summations go over all vertices v_{j_i} and all circuits Z_{k_i}, respectively.
From the construction of the graph R it is evident that
\[
R - u = R'_1 + R'_2 + \cdots + R'_m \tag{8}
\]
and bearing in mind Lemma 1 we transform (8) into
\[
\mu(R) = x \prod_{h=1}^{m} \mu(Rh') - \sum_{i=1}^{m} \mu(Rh') \left[\sum_{j_i} \mu(R_i - u_i - v_{j_i}) + 2 \sum_{k_i} t_{k_i} \mu(R_i - Z_{k_i}) \right] \tag{9}
\]
On the other hand, application of Lemma 2 to R_i gives
\[
\mu(R_i) = x \mu(R_i - u_i) - \sum_{j_i} \mu(R_i - u_i - v_{j_i}) - 2 \sum_{k_i} t_{k_i} \mu(R_i - Z_{k_i})
\]
which combined with (9) gives
\[
\mu(R) = x \prod_{h=1}^{m} (Rh') + \sum_{i=1}^{m} \mu(Rh') [\mu(R_i) - x \mu(R_i')].
\]
Formula (7) follows now immediately. \(\square \)

Proof of Theorem 1. Lemma 5 can, of course, be used for all graphs possessing cutpoints. Since the vertices u and v of the graph G are cutpoints (see Fig. 1) we may apply formula (7) to G and its subgraphs $G - A$ and $G - B$.

![Fig. 2](image)

Defining the graph G_1 as obtained by identifying the roots of B and Y with the vertex v of H (see Fig. 2), we arrive at the following special case of (7):
\[
\mu(C) = \mu(A) \mu(X') \mu(G_1 - u) + \mu(A') \mu(X) \mu(G_1 - u) + \mu(A') \mu(X') \mu(G_1) - 2x \mu(A') \mu(X') \mu(G_1 - u). \tag{10}
\]
Let the graph G_2 be obtained, in analogy to G_1, by identifying the roots of A and X with the vertex u of H (see Fig. 2). Then we immediately conclude that

\[G - A = X' + (G_1 - u), \quad G - B = Y' + (G_2 - v) \quad \text{and} \quad G - A - B = X' + Y' + (H - u - v) \]

and therefore

\[\mu(G - A) = \mu(X')\mu(G_1 - u), \quad \mu(G - B) = \mu(Y')\mu(G_2 - v) \]
\[\mu(G - A - B) = \mu(X')\mu(Y')\mu(H - u - v). \]

On the other hand, by Lemma 5,

\[\mu(G_1) = \mu(B)\mu(Y')\mu(H - v) + \mu(B')\mu(Y)\mu(H - v) + \mu(B')\mu(Y')\mu(H - v) - 2x\mu(B')\mu(Y')\mu(H - v) \]
\[\mu(G_1 - u) = \mu(B)\mu(Y')\mu(H - u - v) + \mu(B')\mu(Y)\mu(H - u - v) + \mu(B')\mu(Y')\mu(H - u - v) - 2x\mu(B')\mu(Y')\mu(H - u - v) \]
\[\mu(G_2 - v) = \mu(A)\mu(X')\mu(H - u - v) + \mu(A')\mu(X)\mu(H - u - v) + \mu(A')\mu(X')\mu(H - v) - 2x\mu(A')\mu(X')\mu(H - u - v). \]

Substituting eqs. (10)–(13) into the l. h. s. of formula (5) we obtain its r. h. s. after a lengthy calculation.

Corollary 1.1 follows for $t_1 = t_2 = \cdots = t_r = 1$, by taking into account eq. (3) and the fact that $G - P_t = A^r + B^r + X + Y + (H - P_1)$. Corollary 1.2 is obtained in a similar manner for $t_1 = t_2 = \cdots = t_r = 0$ using eq. (4). Corollary 1.3 is based on the fact that because of $(G - A - P_t) + (G - B - P_t) = A^r + B^r + X + Y + (H - P_1) + (H - P_t)$, we have

\[\alpha(A')\alpha(B')\alpha(X')\alpha(Y')\alpha(H - P_1)^2 = \alpha(G - A - P_t)\alpha(G - B - P_t). \]

Proof of Theorem 2 will be performed by induction on the length p of the path P.

Let H_0, H_1, \ldots, H_p be rooted graphs whose roots are denoted by v_0, v_1, \ldots, v_p, respectively. Then the graph H (from Theorem 2) can be constructed by joining the vertices v_{i-1} and v_i by a new edge e_i, $i = 1, \ldots, p$ (see Fig. 3). In this notation, $v_0 \equiv u$ and $v_p \equiv v$.

One should observe that the edges e_i cannot belong to circuits, and thus Lemma 3 is applicable to them.
For $p = 0$, eq. (6) is fulfilled in a trivial manner since then $u \equiv v$ and, by definition, $\mu(H - u - v) \equiv 0$.

For $p = 1$, Lemma 3 gives $\mu(H) = \mu(H_0)\mu(H_1) - \mu(H_0 - u)\mu(H_1 - v)$ and since

$$
\mu(H - u) = \mu(H_0 - u)\mu(H_1), \quad \mu(H - v) = \mu(H_0)\mu(H_1 - v), \\
\mu(H - u - v) = \mu(H - P)\mu(H_0 - u)\mu(H_1 - v)
$$

one immediately verifies that (6) holds.

Suppose now that $p > 1$ and that (6) holds for the graph H' and its vertices v_1 and v_{p-1} (see Fig. 4). For convenience we shall write $v_1 = u', v_{p-1} = v'$. Applying Lemma 3 to the edges e_1 and e_p of H and using Lemma 1, we arrive at

$$
\mu(H) = \mu(H_0)\mu(H_p)\mu(H') - \mu(H_0 - v_0)\mu(H_p)\mu(H' - u'), \\
-\mu(H_0)\mu(H_p - v_p)\mu(H' - v') + \mu(H_0 - v_0)\mu(H_p - v_p)\mu(H' - u'v').
$$

In addition to this,

$$
\mu(H - u) = \mu(H_0 - v_0)[\mu(H_p)\mu(H') - \mu(H_p - v_p)\mu(H' - u')], \\
\mu(H - v) = \mu(H_p - v_p)[\mu(H_0)\mu(H') - \mu(H_0 - v_0)\mu(H' - u')], \\
\mu(H - u - v) = (H_0 - v_0)\mu(H_p - v_p)\mu(H').
$$

Substituting all these relations into the l. h. s. of eq. (6) one obtains

$$
\mu(H - u)\mu(H - v) - \mu(H)\mu(H - u - v) = \\
\mu(H_0 - v_0)^2\mu(H_p - v_p)^2[\mu(H' - u')\mu(H' - v') - \mu(H')\mu(H' - u' - v')].
$$

According to the induction hypothesis,

$$
\mu(H' - u')\mu(H' - v') - \mu(H')\mu(H' - u' - v') - [\mu(H' - P)]^2
$$

where P is the (unique) path connecting v_1 and v_{p-1} in H'. Bearing in mind that $H' - P = (H_1 - v_1) + (H_2 - v_2) + \cdots + (H_{p-1} - v_{p-1})$ we conclude that

$$
\mu(H - u)\mu(H - v) - \mu(H)\mu(H - u - v) = \\
= [\mu(H_0 - v_0)\mu(H_1 - v_1)\mu(H_2 - v_2)\cdots\mu(H_p - v_p)]^2
$$

which is equivalent to eq. (6). This proves Theorem 2. □

Discussion. It see that Theorems 1 and 2 are special cases of a more general result, which, however remains still to be discovered. We conjecture the following relation for the matching polynomial.

Let G be a graph and A and B its two subgraphs, such that A and B have disjoint vertex sets. Let P_1, P_2, \ldots, P_s be the paths in G whose one endpoint
belongs to A, the other endpoint to B, and no other vertex belongs to either A or B. then

$$
\alpha(G - A)\alpha(G - B) - \alpha(G)\alpha(G - A - B) = \sum_{i} \alpha(G - A - P_i)\alpha(G - B - P_i) - \\
- \sum_{i < j} \alpha(G - A_i - P_i - P_j)\alpha(G - B - P_i - P_j) + \cdots + \\
+(-1)^{n-1}\alpha(G - A - P_1 - P_2 - \cdots - P_n)\alpha(G - B - P_1 - P_2 - \cdots - P_n)
$$

(15)

where the convention is that whenever at least two among the paths $P_i, P_{i+1}, \ldots, P_n$ have at least one common vertex, then $\alpha(G - A - P_1 - P_2 - \cdots - P_n) \equiv \alpha(G - B - P_1 - P_2 - \cdots - P_n) \equiv 0$.

If both A and B are one-vertex graphs, then (15) reduces to (4). Another special case of eq. (15), namely when only B is a one-vertex graph, reads

$$
\alpha(G - A)\alpha(G - v) - \alpha(G)\alpha(G - A - v) = \sum_{i} \alpha(G - A - P_i)\alpha(G - v - P_i)
$$

and has been established previously [6]. Corollary 1.3 is a third special case of the formula (15).

REFERENCES