ON THE MINIMAL DISTANCE OF THE ZEROS OF A POLYNOMIAL

Slaviša B. Prešić

1. Let

\[p(x) = \sum_{\nu=0}^{n} a_{\nu} x^\nu, \quad (a_{\nu} \in C, \ a_n \neq 0) \]

be a complex polynomial whose zeros \(x_1, \ldots, x_n \) are mutually distinct. In this paper we give a method of finding some positive lower bounds of

\[\min_{i \neq j} |x_i - x_j|. \]

2. In the sequel we shall use some well known facts about polynomials. Let \(p(x) = a_0 + \cdots + a_n x^n \) \((a_n \neq 0)\) be any complex polynomial. There are many known formulas ([1], [2]) of the type

\[|x_i| \leq M \quad (i = 1, \ldots, n) \]

where \(x_1, \ldots, x_n \) are all zeros of \(p(x) \) and \(M \) is a positive constant. So, a classical result due to Cauchy [1] is

\[|x_i| \leq 1 + \max_{1 \leq \nu < n} (|a_\nu|/|a_n|) \]

We emphasize that in this case, and the same is almost ever, \(M \) has the following porperty

\[M \text{ is an increasing function in each } |a_0|/|a_n|, \ldots, |a_{n-1}|/|a_n| \]

Let, further, besides \(p(x) \)

\[p_1(x) = b_0 + \cdots + b_m x^m, \quad (b_m \neq 0) \]

AMS Subject Classification (1980): Primary 12D10, 26C10, 30C15.
be another complex polynomial. Then there is a polynomial of the form
\begin{equation}
 r(x) = c_0 + \cdots + c_{n-1}x^{n-1}
\end{equation}
such that the equality
\begin{equation}
 p_i(x_i) = r(x_i)
\end{equation}
holds for every zero \(x_i \) of the polynomial \(p(x) \). In other words we have the following relation
\begin{equation}
 p_i(x) \equiv r(x) \pmod{p(x)}
\end{equation}
There are at least two methods of finding \(r(x) \): by the division algorithm or by applying, enough number of times, the substitution
\[x^n \rightarrow -a_n^{-1}(a_0 + a_1x + \cdots + a_{n-1}x^{n-1}). \]
Note that for \(r(x) \) we shall also use the notation \(r(p_1(x), p(x)) \).

Suppose now that we would like to have a polynomial \(r(x) \) of the form (6) such that the equality
\begin{equation}
 1/p_i(x_i) = r(x_i)
\end{equation}
holds for every zero \(x_i \) of \(p(x) \). Generally such a polynomial \(r(x) \) does not exist.
It exists just in the case the polynomials \(p(x) \) and \(1 \) have no common zero, i.e. they are relatively prime polynomials. Then \(r(x) \) can be found by the Euclidean algorithm, for example. Namely, in such a way we can find two polynomials \(e_1(x), e_2(x) \) such that the identity
\[e_1(x)p(x) + e_2(x)p_1(x) = 1 \]
holds. Hence we have the equality \(1/p_1(x_i) = e_2(x_i) \) and consequently for \(r(x) \) we may take the polynomial \(r(e_2(x), p(x)) \). Note that for the obtained \(r(x) \), i.e. \(r(e_2(x), p(x)) \) we shall also use the notation as before; \(r(1/p_1(x), p(x)) \). More generally, if \(a(x)/b(x) \) is any rational function, where \(b(x) \) and \(p(x) \) are relatively prime polynomials, then by \(r(a(x)/b(x), p(x)) \) will be denoted a polynomial of the form (6) such that the equality \(a(x_i)/b(x_i) = r(x_i) \) holds for every zero \(x_i \) of the polynomial \(p(x) \). Obviously the polynomial \(r(x) \) a unique.

Example 1. Let
\begin{equation}
 p(x) = x^3/3 - x^2 + 2x + 1/3, \quad p_1(x) = x^2 - 2x + 2.
\end{equation}
Then using the Euclidean algorithm we obtain the following polynomial equalities
\[p(x) = p_1(x)(x - 1)/3 + (2x + 3)/3, \quad p_1(x) = (2x + 3)/3 \cdot (3x/2 - 21/4) + 29/4 \]
from which on eliminating the polynomial \((2x + 3)/3 \) we infer the equality
\[p(x)(-6x + 42)/29 + p_1(x)(2x^2 - 9x + 11)/29 = 1 \]
Thus we see that
\[r(1/p_1(x), p(x)) = (2x^2 - 9x + 11)/29 \]

3. Now we are going to describe, step by step, a method of finding a lower bound of (2) for a given polynomial (1).

Firstly, we begin with the Taylor formula
\[p(x) = p(x_i) + (x - x_i)p'(x_i) + \cdots + (x - x_i)^n p^{(n)}(x_i) \]
where \(i \in \{1, \ldots, n\} \) is fixed. Hence we conclude that the following equation in \(d \)
\[d^{n-1} \cdot p'(x_i) + d^{n-2} \cdot p''(x_i) + \cdots + d \cdot \frac{p^{(n-1)}(x_i)}{(n - 1)!} + \frac{p^{(n)}(x_i)}{n!} = 0 \]
has the zeros \((x_1 - x_i)^{-1}, \ldots, (x_{i-1} - x_i)^{-1}, (x_{i+1} - x_i)^{-1}, \ldots, (x_n - x_i)^{-1} \).

Secondly, let
\[M(|p^{(n)}(x_i)/n!p'(x_i)|, |p^{(n-1)}(x_i)/(n - 1)!p'(x_i)|, \ldots, |p''(x_i)/2!p'(x_i)|) \]
be any increasing (in the sense of (5)) upper bound of the moduli of the zeros of the equation (11). Thus, we have the inequality
\[|x_j - x_i| \leq M(|p^{(n)}(x_i)/n!p'(x_i)|, |p^{(n-1)}(x_i)/(n - 1)!p'(x_i)|, \ldots, |p''(x_i)/2!p'(x_i)|) \]
\[\ldots, |p''(x_i)/2!p'(x_i)|) \]

Thirdly, suppose that a constant \(A > 0 \) is an upper bound of \(|x_i| \) (\(i = 1, \ldots, n \)).

Fourthly, suppose that we have determined the following polynomials
\[r(p^{(n)}(x)/n!p'(x)), r(p^{(n-1)}(x)/(n - 1)!p'(x)), \ldots, r(p''(x)/2!p'(x)) \]
which exist since \(p(x) \) has mutually distinct zeros. Denote these polynomials by \(r_n(x), r_{n-1}(x), \ldots, r_2(x) \) respectively.

For any polynomial \(f(x) = f_0 + f_1x + \ldots + f_x \) let \(|f|(x) \) denote the polynomial \(f_0| + |f_1|x + \cdots + |f_x|x^x \).

Fifthly, using the monotony of \(M \) and the inequalities \(|x_i| \leq A \) from (13) it follows that
\[|x_j - x_i| \geq (M(|r_n|(A), |r_{n-1}|(A), \ldots, |r_2|(A)))^{-1} \quad (i \neq j) \]
which yields our final result.
THEOREM. The minimal distance of the zeros of the polynomial (1) satisfies the inequality

\[
\min_{j \neq i} |x_j - x_i| \geq (M(|r_n|(A), |r_{n-1}|(A), \ldots, |r_2|(A)))^{-1}
\]

Example 2. Let \(p(x) \) be the polynomial considered in Example 1. Then we have the following equalities

\[
p'(x) = p_1(x), \quad p''(x) = 2x - 2, \quad p'''(x) = 2
\]

As we have already established we have the equality (see (10))

\[
r(1/p'(x), p(x)) = (2x^2 - 9x + 11)/29
\]

In the next step we should decide which the \(M \)-formula to use. Let us take the Cauchy’s one. So, according to (13) we have the following inequality

\[
|x_j - x_i|^{-1} \leq 1 + \max(|p''(x_i)/2p(x_i)|, |p'''(x_i)/6p'(x_i)|)
\]

i.e. the inequality

\[
|x_j - x_i|^{-1} \leq 1 + \max(|x_i - 1/x_i^2 - 2x_i + 2|, |1/(x_i^2 - 2x_i + 2)|)
\]

Using (15) it is easily seen that

\[
\frac{1}{x^2 - 2x + 2} \equiv \frac{2x^2 - 9x + 11}{29} \pmod{p(x)},
\]

\[
\frac{x - 1}{x^2 - 2x + 2} \equiv \frac{-5x^2 + 8x - 13}{29} \pmod{p(x)}
\]

Thus the inequality of the type (14) reads

\[
\min_{i \neq j} |x_j - x_i| \leq 1/ \left(1 + \max \left(\frac{2A^2 + 9A + 11}{29}, \frac{5A^2 + 9A + 13}{29} \right) \right)
\]

where \(A \) is an upper bound of \(|x_1|, |x_2|, |x_3|\). For instance, using the Cauchy formula (4) we conclude that

\[
\min_{i \neq j} |x_j - x_i| \geq 29/350,
\]

REFERENCES
