ON THE ABSOLUTE SUMMABILITY OF LACUNARY FOURIER SERIES

N. V. Patel and V. M. Shah

Abstract. Let $f \in L[-\pi, \pi]$ and let its Fourier Series $\sigma(f)$ be lacunary. The absolute convergence of $\sigma(f)$ when f satisfies Lipschitz condition of order α, $0 < \alpha < 1$, only at a point and when $\{n_k\}$ satisfies the gap condition $n_{k+1} - n_k \geq A n_k^\beta k^\gamma$ $(0 < \beta < 1$, $\gamma \geq 0)$ is obtained by Patadia and Shah when $\alpha\beta + \alpha\gamma > (1 - \beta)/2$. Here we study the absolute summability of $\sigma(f)$ when $\alpha\beta + \alpha\gamma \leq (1 - \beta)/2$.

1. Let
\[
\sum_{k=1}^{\infty} (a_{n_k} \cos n_k x + b_{n_k} \sin n_k x)
\]
be the Fourier series of a 2π-periodic function $f \in L[-\pi, \pi]$ with an infinity of gaps (n_k, n_{k+1}), where $\{n_k\}$ $(k \in N)$ is a strictly increasing sequence of natural numbers. Noble [7], Kennedy [4, 5, 6], and several other mathematicians, have studied the absolute convergence of the Fourier series (1.1), as well as the order of magnitude of Fourier coefficients, by considering various properties of f either on an arbitrary subinterval or on an arbitrary subset of $[-\pi, \pi]$ of positive measure. This way they obtained a number of results under different lacunary conditions. Izumi and Izumi [3], Chao [1], and Patadia and Shah [8], have studied this problem for the Fourier series (1.1) with some lacunae when the function satisfies Lipschitz condition only at a point. Chao [1] proved the following theorems:

Theorem A. [1; Theorem 1]. If
\[
\begin{align*}
(i) & \quad f \in \text{Lip} \alpha \,(\alpha > 0) \text{ at a point } x_0 \in (-\pi, \pi), \\
(ii) & \quad n_{k+1} - n_k \geq A F(n_k)
\end{align*}
\]
where $F(n_k) \uparrow \infty$ as $k \to \infty$, $F(n_k) \leq n_k$ for all k and A is a positive constant, then
\[
a_{n_k}, b_{n_k} = O(F(n_k)^{-\alpha}), \; k = 1, 2, \ldots
\]

AMS Subject Classification (1980): Primary 42A28.
\textbf{Theorem B.} [1; Theorem 2]. If f satisfies (1.2) and if
\[n_{k+1} - n_k \geq A \beta^k \kappa \quad (0 < \beta < 1, \ \gamma \geq 0) \]
(1.5)
where A is a positive constant, then the Fourier series (1.1) of f converges absolutely when $\alpha \beta + \alpha \gamma + \beta > 1$

Furthermore, Patadia and Shah [8] considered the same gap condition (1.5) and proved the following theorem:

\textbf{Theorem C.} If f satisfies (1.2), and if \{\textit{n}_k\} satisfies (1.5), then
\[\sum_{k=1}^{\infty} \left(|a_{n_k}|^r + |b_{n_k}|^r \right) < \infty \quad 0 < r \leq 1 \]
(1.6)
when $\alpha \beta r + \alpha \gamma > (1 - r/2)(1 - \beta)$.

We observe that the particular case of theorem C when $r = 1$ provides us with a generalization of Theorem B, ensuring the absolute convergence of the Fourier series (1.1) when $\alpha \beta + \alpha \gamma > (1 - \beta)/2$. It may be noted here that when $\alpha \beta + \alpha \gamma = (1 - \beta)/2$, the absolute convergence of (1.1) is obtained by Patadia and Shah [9] by taking at a point a little stronger condition than Lip α on f.

Now, it is quite natural to inquire into the behaviour of the Fourier series (1.1) of a function f in Lip α at a point, when $\alpha \beta + \alpha \gamma \leq (1 - \beta)/2$. In this regard, we propose to study the absolute summability (c, θ) of the series (1.1). We prove the following theorem:

\textbf{Theorem.} If $f \in$ Lip $\alpha(0 < \alpha < 1)$ at a point $x_0 \in (-\pi, \pi)$, and if \{\textit{n}_k\} satisfies (1.5) with some suitable constant A, then the Fourier series (1.1) of f is absolutely summable (c, θ) for $0 < \theta \leq 1$ when
\[\alpha > \max \left\{ \frac{1 - \beta - \theta - \gamma \theta}{\beta + \gamma}, \frac{2 - 3(\beta - \gamma) + \beta \theta - \theta}{\beta + \beta \gamma} \right\} \]

\textit{Remark 1.} Theorems 1 and 2 due to Patel [10] are particular cases of this theorem when $\theta = 1, \ \gamma = 0, \ \text{and} \ \theta = 1/2, \ \gamma = 0$ respectively.

\textit{Remark 2.} It is interesting to observe that when $\gamma = 1$, the theorem gives the absolute summability $(c, 1)$ of the Fourier series (1.1) for every $\alpha > 0$; and that, when $\gamma = 3/2$, we get the absolute summability $(c, 1/2)$ of (1.1) for every $\alpha > 0$.

2. We need the following lemma due to Patadia and Shah [9].

\textbf{Lemma.} If \{\textit{n}_k\} satisfies (1.5) with $A > 2^M - 1$, M being a positive integer greater than, δ, where $\delta = (1 + \gamma)/(1 - \beta)$, then
\[n_k \geq k^\delta \quad \text{for all} \ k \in N \]
(2.1)
Proof of the Theorem. For a real number s, which is not a negative integer, put $E_n^s = \left(\frac{n^s}{n} \right)$ where $n \in \mathbb{N}$ and $E_n^0 = 1$. Denoting the n-th Cesaro mean of order $\theta > 0$ by $\sigma_n^\theta(x)$, and replacing the absent terms in (1.1) by zeros, we have \cite{2}:

$$
|\sigma_n^\theta(x) - \sigma_{n_k-1}^\theta(x)| = \frac{1}{n_k \cdot E_{n_k}^\theta} \left| \sum_{p=1}^{k} E_{n_k-n_p}^{\theta-1} \cdot n_p \cdot (a_{n_p} \cos n_p x + b_{n_p} \sin n_p x) \right|
$$

\[
\leq \frac{1}{n_k \cdot E_{n_k}^\theta} \left\{ \left| n_k (a_{n_k} \cos n_k x + b_{n_k} \sin n_k x) \right| + \left| \sum_{p=1}^{k-1} E_{n_k-n_p}^{\theta-1} \cdot n_p \cdot (a_{n_p} \cos n_p x + b_{n_p} \sin n_p x) \right| \right\}. \quad (2.2)
\]

Let $0 < \theta \leq 1$. Now,

(i) $E_n^\theta \approx \frac{n^\theta}{\Gamma(\theta + 1)}$,

(ii) $a_{n_k}, \ b_{n_k} = O\left(\frac{1}{n_k^{\alpha/\beta} \cdot k^{\gamma/\alpha}}\right)$, $k = 1, 2, 3, \ldots$,

by taking $F(n_k) = n_k^{\beta/\gamma} k^\gamma$ in Theorem A, and

(iii) $|n_k - n_p| \geq |n_k - n_{k-1}|$ for $p = 1, 2, 3, \ldots, k - 1$

\[
\geq A n_k^{\beta/\gamma}, \quad \text{by (1.5)}.
\]

Hence, from (2.1) and (2.2), we obtain

$$
|\sigma_n^\theta(x) - \sigma_{n_k-1}^\theta(x)|
$$

\[
= \text{o}(1) \left\{ n_k^{\alpha_{\gamma/\alpha}} k^{-\gamma/\alpha} + \sum_{p=1}^{k-1} \frac{1}{(n_k - n_p)^{1-\theta}} \cdot n_p \cdot n_p^{\alpha_{\gamma/\alpha}} p^{-\gamma/\alpha} \right\}
\]

\[
= \text{o}(1) \left\{ n_k^{1-\alpha/\beta} k^{-\gamma/\alpha} + \frac{1}{n_k^{\beta/\gamma} k^{\gamma}} \sum_{p=1}^{k-1} n_p^{1-\alpha_{\gamma/\alpha}} \cdot p^{-\gamma/\alpha} \right\}
\]

\[
= \text{o}(1) \left\{ n_k^{1-\alpha/\beta} k^{-\gamma/\alpha} + \frac{1}{n_k^{\beta/\gamma} k^{\gamma}} \cdot k \cdot n_k^{1-\alpha_{\gamma/\alpha}} \right\},
\]

as $p^{-\alpha/\gamma} \leq 1$ and $n_p^{1-\alpha_{\gamma/\alpha}} \leq n_k^{1-\alpha_{\gamma/\alpha}}$, $0 < \alpha, \beta < 1$. Therefore

$$
|\sigma_n^\theta(x) - \sigma_{n_k-1}^\theta(x)| = \text{o}(1) \left\{ \frac{1}{n_k^{\theta+\alpha_{\gamma/\alpha}}} + \frac{1}{n_k^{\theta+\beta+\gamma/\alpha}} + \frac{1}{n_k^{\theta+\beta-\alpha/\gamma}} + \frac{1}{n_k^{\theta+\beta-\alpha_{\gamma/\alpha}+\gamma/\alpha}} \right\}
$$

\[
= \text{o}(1) \left\{ k^{\delta(\theta+\alpha_{\gamma/\alpha}+\gamma/\alpha)} + \frac{1}{k^{\delta(\theta+\beta-\alpha/\gamma)+\gamma/\alpha}} \right\}
\]

\[
= \text{o}(1) \left\{ \exp_k \left(\frac{\theta + \alpha_{\gamma/\alpha} + \gamma/\alpha + 1}{1 - \beta} \right) \right\} + \exp_k \left(\frac{\theta + 2\beta - \alpha/\gamma + \alpha_{\gamma/\alpha} + \gamma/\alpha - 1}{1 - \beta} \right), \quad (2.3)
\]
as \(\delta = (1+\gamma)/(1-\beta) \); \(\exp_k A \) denotes \(k^{-A} \). Finally, since \(\alpha > (1-\beta - \theta \gamma)/(\beta + \gamma) \), it follows that \((\theta + \alpha \beta + \gamma \theta + \alpha \gamma)/(1 - \beta) > 1 \); and since

\[
\alpha > \frac{2-3\beta - \gamma + \beta \theta - \theta}{\beta + \beta \gamma}
\]

we have

\[
\frac{\theta + 2\beta - \beta \theta + \alpha \beta + \alpha \beta \gamma + \gamma - 1}{1 - \beta} > 1.
\]

Hence, from (2.3) we have

\[
\sum_{k=1}^{\infty} |\sigma_{n_k}^\alpha (x) - \sigma_{n_{k-1}}^\alpha (x)| < \infty,
\]

which implies the absolute summability \((c, \theta)\) of (1.1). This completes the proof of the theorem.

REFERENCES

Department of Mathematics,
Faculty of Science
M. S. University of Baroda
Baroda, 390 002 (Gujarat), India

(Received 12 07 1982)