A NIL-EXTENSION OF A COMPLETELY SIMPLE SEMIGROUP

Stojan Bogdanović and Svetozar Milić

Abstract. We describe semigroups which are nil-extensions of completely simple semigroups and in particular nil-extensions of left groups or rectangular bands.

In this paper we consider power regular semigroups in which idempotents are primitive. These semigroups are nil-extensions of a completely simple semigroups (Theorem 1).

Power regular semigroups are considered in [1]. A semigroup S is power regular if for every $a \in S$ there exists $m \in N$ such that $a^m \in a^mSa^m$. A semigroup S is power completely regular if for every $a \in S$ there exist $x \in S$ and $m \in N$ such that $a^m = a^mxa^m$, $a^mz = xa^m$.

If e, f are idempotents of a semigroup S, we shall write $e \leq f$ if $ef = fe = e$. An idempotent is called primitive if it is nonzero and is minimal in the set of non-zero idempotents relative to the partial order \leq. By nil-extension we mean an ideal extension by a nil-semigroup. A semigroup S with zero 0 is a nil-semigroup if for every $a \in S$ there exists $n \in N$ such that $a^n = 0$. By E denote the set of all idempotents of a semigroup.

For undefined notions and notations we refer to [2], [4] and [7].

Lemma 1. If S is power regular semigroup all of whose idempotents are primitive, then S is power completely regular with maximal subgroups given by $G_e = eSe$ ($e \in E$).

Proof. For $a \in S$ there exist $x \in S$ and $m \in N$ such that $a^m = a^mxa^m$. For $a^k \in S$, where $k > m$, there exist $y \in S$ and $n \in N$ such that $a^k = a^kya^k$. Assume that $e = a^m$ an $f = a^nya^m$. Then

$$f^2 = a^kya^mxa^kya^m = a^kya^m(a^mxa^m)a^{k-m}ya^m = a^kya^m(a^k-m)a^{k-m}ya^m = a^kya^m(a^k-m)a^{k-m}ya^m$$

$$= a^kya^mxa^m = a^kya^m = f$$

$$ef = a^mxa^kya^m = a^mxa^m(a^k-m)a^{k-m}ya^m = a^mxa^m$$

$$fe = a^kya^mxa^m = a^kya^m = f.$$
Hence, $ef = fe = f$. From this it follows that
\[a^m = a^m xa^m = ea^m = fa^m = a^{kn}ya^m xa^m \in a^{m+1} Sa^m \]
i.e. S is power completely regular [1, Proposition 3.2].

Let $e \in E$ and $u \in G_e$, then $u = eue \in eSe$ and thus $G_e \subseteq eSe$. Conversely, let $u \in eSe$, i.e. $uebe$ for some $b \in S$. Then $u^p \in G_f$ for some $p \in N$ and $f \in E$, so
\[ef = eu^p(u^p)^{-1} = e(abe)^p(u^p)^{-1} = f \]
and dually $fe = f$. Hence, $e = f$. Therefore, $u^p \in G_e$. From this and Lemma 1 of [6] we have that $u^{p+1} \in G_e$, so
\[e = u^{p+1}(u^{p+1})^{-1} = u \cdot u^p(u^{p+1})^{-1} = u^p(u^{p+1})^{-1} \cdot u \]
and since $eu = e(abe) = ebe = u = ue$ we have that $u \in G_e$ and therefore $eSe \subseteq G_e$.

Lemma 2. The unity e of a minimal bi-ideal B of S is a primitive idempotent in S.

Proof. For an arbitrary idempotent $f \in S$, if $f = ef = fe$, then $f = ef e \in eSe \subseteq B$, so $e = f$ (since B is a subgroup of S [5, Lemma 2.6]).

Lemma 3. Let K be the union of all minimal bi-ideals of S. Then k is a completely simple kernel of S.

Proof. By Lemma 2.5 [5] K is an ideal of S. By Lemma 2 we have that every idempotent from K is primitive and since K is a union of groups we have that K is completely simple [4, Corollary III 3.6].

The following theorem is a generalization of a result of Munn [6, Theorem 2].

Theorem 1. The following conditions are equivalent on a semigroup S:

(i) S is power regular and all idempotents of S are primitive;

(ii) S is a nil-extension of a completely simple semigroup;

(iii) ($\forall a, b \in S$) ($\exists m \in N$) ($a^m \in a^m b Sa^m$).

Proof. (i) \Rightarrow (ii). By Lemma 1 we have that S is power completely regular and maximal subgroups of S are of the form $G_e = eSe$ ($e \in E$). Since $G_e(e \in E)$ is a minimal bi-ideal [5, Lemma 2.6], then by Lemma 3 we have that S has a completely simple kernel K. It is clear that for every $a \in S$ there exists $m \in N$ such that $a^m \in K$.

(ii) \Rightarrow (i). This implication follows immediately.

(ii) \Rightarrow (iii). If S is nil-extension of a completely simple semigroup, then for $a, b \in S$, a^m, $a^m ba^m \in G_e$ for some $m \in N$ (Lemma 1), so $a^m = a^m ba^m x$ for some $x \in G_e$. From this it follows that $a^m = a^m ba^m x(a^m)^{-1} a^m \in a^m b Sa^m$.

(iii) \Rightarrow (ii). For $a = b$ we have that $a^m \in a^{m+1} Sa^m$, so by [1, Proposition 3.2] S is power completely regular. Let S have a proper ideal I. For $e \in E$ and
b \in I \text{ we have } e \in ebSe \subseteq 1. \text{ Hence, the intersection of all ideals of } S \text{ is nonempty, i.e. } S \text{ has a minimal ideal } K. \text{ Since } K \text{ is power completely regular we have that } K \text{ is completely simple (Theorem 2. [6]). For } a \in S \text{ and } b \in K \text{ we have that } \alpha^m \in a^m b Sa^m \subseteq K \text{ for some } m \in N.

\textbf{Theorem 2. The following conditions on a semigroup } S \text{ are equivalent:}

(i) \quad S \text{ is a nil-extension of a left group;}
(ii) \quad S \text{ is power regular and } E \text{ is a left zero band;}
(iii) \quad (\forall a, b \in S) \ (\exists m \in N) \ (a^m \in a^m Sa^m b).

\textbf{Proof. (i) } \Rightarrow (ii). \text{ This implication follows immediately.}

(ii) \Rightarrow (iii). \text{ By Theorem 1 we have that } S \text{ contains a completely simple kernel } K \text{ which is, in fact, a left group. For } a, b \in S \text{ there exist } m, n \in N \text{ such that } a^m, b^n \in K, \text{ so } a^m = x b^{n+1}, b^n = y a^m \text{ for some } x, y \in K. \text{ Since } a^m \in G_e \text{ for some } e \in E \text{ we have } a^m = a^m (a^m)^{-1} x b^{n+1} b = a^m (a^m)^{-1} x y a^m b \in a^m Sa^m b. \text{ (iii) } \Rightarrow (i). \text{ If the condition (iii) holds, then for } a \in S \text{ we have that } a^m \in a^m Sa^m a = a^m Sa^m b \text{ for some } m \in N \text{ and therefore by Proposition 3.2. [1] } S \text{ is power completely regular. For } e, f \in E \text{ we have that } f = f x f e \text{ for some } x \in S, \text{ so } f e = (f x f e) e = f, \text{ i.e. } E \text{ is a left zero band. Hence, } K \cup_{e \in E} G_e \text{ is a left group (see [2, Ex. e. §1.11].}

\textbf{Corollary 1. } S \text{ is a left group iff } (\forall a, b \in S) \ (a \in aS a).$

\textbf{Theorem 3. Let } S \text{ be a semigroup. If}

(\forall a \in S) (\exists x \in S) (\exists m \in N) (a^m = x a^{m+1}) \tag{1}

\text{then } S \text{ is a nil-extension of a left group.}

\textbf{Proof. Let (1) be satisfied in a semigroup } S. \text{ Then } a^m = x a^{m+1} = x^n a a^{m+1}. \text{ From this and from (1) it follows that}

x = x^2 a. \tag{2}

Furthermore, for } x \text{ there exist } y \in S \text{ and } n \in N \text{ such that } x^n = y x^{n+1} \text{ and }
y^2 = y x. \tag{3}

\text{From (2) and (3) it follows that}
y^2 = y y x = y^3 x^2 a = y^3 x x^2 a^2 = y^2 x^2 a^2 = y^2 x a = y a = y x a a^{m+1}. \text{ For } k = \max(m, n) \text{ we have}
y^2 = y x^{m+1} = y x^{k+1} a^{k+2} = y x^{n+1} x^{k-n} a^{k+2} = x^n a^{k-n} a^{k+2} = x^k a^{k+2} = x a^3, \text{ so } y = y^2 x = x a^3. \text{ Further,}
y^{m+2} = y^m y^2 = y^m y a = y^{m-1} y^2 a = y^{m-1} y^2 a = \ldots = y a^{m+1} = xa^3 xa^{m+1} = x a^3 a^m = a^{m+2}.
From this it follows that \(y^{m+2}z^{m+2} = a^{m+2}z^{m+2} \) and by (3) we have \(y = a^{m+2}z^{m+2} \). Hence
\[
a^m = xa^{m+1} = x^n a^{m+n} = yz a^{m+n} = a^{m+2}z^{m+1}x^{n+1}a^{m+n}
\]
so \(a^m \in a^{m+1}\alpha a^m \), i.e. \(S \) is power completely regular.

Let \(e, f \in E \). Then \((ef)^m = x(ef)^{m+1} = xe(ef)^{m+1} \) for some \(x \in S \) and \(m \in N \). By uniqueness we have that \(x = x^2 = e \) and \(x = xe \). From this it follows that \(x = xe = xf \), so \(x = (ef)^m \). Furthermore, \((ef)^m = (ef)^m = e = (ef)^m \) and
\[
(ef)^m = (ef)^m f = (ef)^{m+1} = (ef)(ef)^{m+1} = e(ef)^{m+1}.
\]
Therefore, \(ef = e \). So by Theorem 2 \(S \) is a nil-extension of a left group.

DEFINITION 1. \(S \) is a power group if \(S \) is a power regular with exactly one idempotent.

THEOREM 4. The following conditions are equivalent on a semigroup \(S \):

(i) \(S \) is a power group;

(ii) \(S \) is a nil-extension of a group;

(iii) \((\forall a, b \in S) (\exists m \in N) (a^m \in ba^m Sa^m)\)

Proof. (i) \(\Rightarrow \) (ii) This implication follows immediately.

(ii) \(\Rightarrow \) (iii) Let \(S \) be nil-extension of a group \(G \). For \(a, b \in S \) we have that
\(a^m, a^mb, ba^m \in G \) for some \(m \in N \) and for each \(s \in S \), and then \(a^m = ba^msa^mbs \) for some \(x \in G \), i.e. \(a^m = ba^msa^mbs(a^m)\overline{m}a^m \in ba^msa^m\).

(iii) \(\Rightarrow \) (i) It is clear that \(S \) is power regular. We shall prove that \(S \) has only one idempotent. If \(e \) and \(f \) are idempotents from \(S \), then \(e = xf, f = ey \) for some \(x, y \in S \), so \(ef = xf = e, ef = ey = f \) thus \(e = f \).

COROLLARY 2. The following conditions are equivalent on a semigroup \(S \):

(i) \(S \) is a regular semigroup with only one idempotent;

(ii) \(S \) is a group;

(iii) \((\forall a, b \in S) (a \in baSa)\).

REMARK. (i) \(\Rightarrow \) (ii) is Corollary IV.3.6. of [4].

LEMMA 4. Let \(S \) be a semigroup. If
\[
(\forall a \in S)(\exists 1 x \in S)(\exists m \in N)(a^m = a^mx)^m
\]
then \(S \) is a power group.

Proof. Assume that (4) holds. Then for \(e, f \in E \) we have
\[
(ef)^m = (ef)^mg(ef)^m
\]
for some \(g \in S \) and \(m \in N \) and by uniqueness we have that
\[
g = g(ef)^m g
\]
It follows from \((ef)^m f g(ef)^m = (ef)^m\) that
\[fg = g \] (7)
Similarly,
\[ge = g. \] (8)
If \(m = 1\), then by (6), (7) and (8) we have that \(g = g^2\).
If \(m > 1\), then by (6), (7) and (8) we obtain \(g = g(ef)^m g = g(ef)^m-1 g\) and by uniqueness we have that
\[(ef)^m = (fe)^m \] (9)
It follows from (5) and (9) that \((fe)^m-1 = (fe)^m-1 g(ef)^m-1 = (fe)^m-1 eg(ef)^m-1\), so
\[eg = g. \] (10)
Similarly,
\[gf = g. \] (11)
By (7), (8), (9) and (10) we have that \(g = g(ef)^m g = g^2\). Since \(g\) is an idempotent, then by uniqueness from (6) we obtain \(g = (ef)^m\). Hence,
\[(ef)^{2m} = (ef)^m e(ef)^m = (ef)^m = (ef)^m f(ef)^m \]
and therefore \(e = f\). Thus \(S\) is a power group.

Remark. The converse of Lemma 4 is not true. For example, the semigroup \(S\) given by table 1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>c</td>
</tr>
</tbody>
</table>

is a power group. But, for \(c\) we have that \(c^2 = a \in G = \{a, b\}\) and there exist \(x = a\) and \(x = c\) such that \(c^2 = x^2c^2\).

It is easy to see that in the semigroup given by table 2 the condition (1) from Lemma 4 is satisfied.

Theorem 5. The condition (4) from Lemma 4 holds iff there is only one idempotent \(e\) in \(S\) and for every \(a \in S\) there exists \(m \in N\) such that \(a^m = a^m xa^m\), \(xe = x\).

Proof. If (4) holds, then by Lemma 4 \(S\) contains only one idempotent \(e\). By uniqueness we have that \(x = xa^m x\) and \(a^m x = e\) implies \(xe = x\).

Conversely, assume that for \(a \in S\) there exist \(x, y \in S\) and \(m \in N\) such that
\[a^m = a^m xa^m = a^m ya^m. \] (12)
By uniqueness of the idempotent we have that \(a^m x = xa^m\). Hence, \(a^m\) is in a subgroup \(G_e\) of \(S\). By Lemma 1 [6] we have that \(xe = ex, ye = ey\) and \(xe, ye \in G_e\).
So by (12) we have that \(a^m exa^m = a^m eya^m \) and thus \(ex = ey \) by cancellation in \(G_e \). Hence, \(x = y \).

Corollary 3. [3] \(S \) is a group iff \((\forall a \in S) (\exists x \in S) (a = axa) \).

Theorem 6. \(S \) is a nil-extension of a rectangular band iff

\[
(\forall a, b \in S)(\exists m \in N)(a^m = a^m ba^m).
\]

Proof. Let \(S \) be a nil-extension of a rectangular band \(E \). Then for \(a, b \in S \) there exists \(m \in N \) such that \(a^m = e \in E \) and by Lemma 1 we have that \(a^m ba^m = e \). Thus \(a^m = a^m ba^m \).

Conversely, it is clear that \(E \neq \emptyset \). For \(e, f \in E \) we have \(e = efe \) and \(f = fef \) and if \(ef = fe \), then \(e = ef = f \). Thus \(E \) is a rectangular band. For \(e \in E \) and \(x \in S \) we have that \(e = axe \), so \(ex \in E \), i.e. \(E \) is an ideal of \(S \) and clearly for every \(a \in S \) there exists \(m \in N \) such that \(a^m \in E \). Therefore, \(S \) is a nil-extension of a rectangular band.

Corollary 4. [4] \(S \) is a rectangular band iff \((\forall a, b \in S) (a = aba) \).

Corollary 5. \(S \) is a nil-extension of a left zero band iff

\[
(\forall a, b \in S)(\exists m \in N)(a^m = a^m b).
\]

Corollary 6. \(S \) is a nil-semigroup iff \((\forall a, b \in S)(\exists m \in N)(a^m ba^m = a^m b) \).

References