О КОЭФфиЦИЕНТАХ ФУРье Класса $W^r H(\delta_0)_L$

Слободан Милорадович

Пусть L пространство интегрируемых 2π-периодических функций f и пусть

$$\omega(f, \delta)_L = \sup_{|t| \leq \delta, \delta < \pi} \int_{-\pi}^{\pi} |f(x + t) - f(x)| dx, \quad 0 < \delta \leq \pi,$$

модуль непрерывности функции f в L.

Через

$$H(\delta_0)_L = \{ f : \omega(f, \delta_0)_L \leq 1 \}$$

обозначим класс функций f из L для которых модули непрерывности в фиксированной точке $\delta_0, 0 < \delta_0 \leq \pi$, не превосходят единицы, а через

$$W^r H(\delta_0)_L = \{ f : f^{(r)} \in H(\delta_0)_L, \ r \in N \}$$

обозначим класс функций из L для которых r-та производная $f^{(r)} \in H(\delta_0)_L$.

На данных классах будем рассматривать задачу о верхней грани коэффициентов Фурье

$$a_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \quad b_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

где n-фиксированное натуральное число. Аналогичная задача в пространстве C непрерывных 2π-периодических функций рассматривалась Лебегом [1] и Автором [2].

Прежде всего дадим решение задачи о приближении 2π-periодических функций в метрике C через функции из C с периодом $\frac{2\pi}{k}(k \geq 2, k \in N)$. Период функции f будем обозначать $\Omega(f)$. Положим

$$\hat{f}(x) = \max_{0 \leq s \leq k} f \left(x + \frac{2\pi s}{k} \right), \quad f(x) = \min_{0 \leq s \leq k} f \left(x + \frac{2\pi s}{k} \right), \quad 0 \leq x \leq \frac{2\pi}{k}, \quad s \in N,$$

$$d(x) = \frac{f(x) - f(x)}{2}, \quad 0 \leq x \leq \frac{2\pi}{k}.$$
Справедлива такая

Лемма. Если функция f принадлежит C, $\Omega(f) = 2\pi$, то

(1) $\in\int_{\Omega(\varphi)} \|f - \varphi\|_{c[0,2\pi]} = \|d\|_{c[0,2\pi]}$.

Доказательство. Сразу проверяется что $d \in C$, $d(0) = d\left(\frac{2\pi}{k}\right)$, $\Omega(d) = \frac{2\pi}{k}$, $\Omega(\varphi^*) = \frac{2\pi}{k}$, где $\varphi^* = \frac{f+1}{2}$.

Так как для любого $x \in [0,2\pi]$, $f(x) - \varphi^*(x) \leq f(x) - \varphi^*(x) = d(x)$,

(2) $\|f - \varphi^*\|_{c[0,2\pi]} \leq \|d\|_{c[0,2\pi]}$.

Учитывая что d непрерывна функция на замкнутом интервале то существует такое $x_0 \in [0,\frac{2\pi}{k}]$ что $d(x_0) = \|d\|$. Для любой φ, $\Omega(\varphi) = \frac{2\pi}{k}$,

$\|f - \varphi\|_{c[0,2\pi]} \geq \max_{0 \leq s \leq k} \left| f\left(x_0 + \frac{2\pi s}{k} \right) - \varphi(x_0) \right| \geq \max\left(f(x_0) - \varphi(x_0), \varphi(x_0) - f(x_0) \right) \geq d(x_0) = \|d\|,$

t.e.

(3) $\|f - \varphi\|_{c[0,2\pi]} \geq \|d\|_{c[0,2\pi]}$.

Из (2) и (3) получается (1).

Так как множество $C[0,\frac{2\pi}{k}]$ не строго выпукло то функция с помощью которой достигается равенство, вообще говоря, (1) не единственна.

Заметим что лемма справедлива в более общем случае, когда $\Omega(\varphi) = \frac{2\pi}{l}$, $(l,k) = 1$. Доказательство не меняется.

Теперь мы можем доказать такую теорему:

Теорема 1. Если $f \in H(\delta_0)_L$, то

$$\frac{1}{n\theta_0 \pi} \leq \sup a_n(f) = \sup b_n(f) \leq \left\{ \begin{array}{ll}
\frac{1}{2\pi \sin \frac{\delta_0}{2}}, & \delta_0 \in \left(0,\frac{2\pi}{3}\right] \\
\frac{1}{4\pi \sin \frac{\delta_0}{2}}, & \delta_0 = \frac{2\pi}{2(s+1)\pi}, s = 1,2, \ldots,
\end{array} \right.$$

$$\sup a_n(f) = \sup b_n(f) = \frac{1}{2\pi \sin \frac{\delta_0}{3}}, \frac{2\pi}{3\pi} \leq \delta_0 \leq \pi.$$

Доказательство. В силу периодичности

$$\int_{-\pi}^{\pi} f(x) \sin nxdx = \int_{-\pi}^{\pi} f\left(x + \frac{\pi}{2n} \right) \cos nxdx.$$
Следовательно, если \(f^* \) экстремальная функция для \(b_n(f) \), \(f^* (x + \frac{\pi}{\delta_0}) \) будет экстремальная функция для \(a_n(f) \) и

\[
(4) \quad \sup_{f \in H(\delta_0)_{L}} a_n(f) = \sup_{f \in H(\delta_0)_{L}} b_n(f).
\]

Пусть \(\delta_0 \in (0, \frac{\pi}{2}] \). Так как

\[
b_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{2\pi \sin \frac{\pi}{2}} \int_{-\pi}^{\pi} f(x) \left[\cos n \left(x - \frac{\delta_0}{2} \right) \right. \\
- \cos n \left(x + \frac{\delta_0}{2} \right) \right] \, dx = \frac{1}{2\pi \sin \frac{\pi}{2}} \int_{-\pi}^{\pi} \left[f \left(x + \frac{\delta_0}{2} \right) - f \left(x - \frac{\delta_0}{2} \right) \right] \cos nx \, dx
\]

tо \(b_n(f) \leq \frac{1}{2\pi \sin \frac{\pi}{2}}, \) т.е.

\[
(5) \quad \sup_{f \in H(\delta_0)_{L}} b_n(f) \leq \frac{1}{2\pi \sin \frac{\pi}{2}}
\]

Для функции \(\varphi(x) = \frac{\sin nx}{4n\delta_0} \),

\[
\omega(\varphi, \delta_0) = \sup_{|t| \leq \delta_0} \int_{-\pi}^{\pi} \left| \varphi(x + t) - \varphi(x) \right| \, dx = \sup_{|t| \leq \delta_0} \frac{4nt}{4n\delta_0} = 1 \quad \text{и} \quad \varphi \in H(\delta_0)_{L}.
\]

Учитывая (4), (5) и что

\[
b_n(\varphi) = \frac{1}{4n\delta_0} \int_{-\pi}^{\pi} |\sin nx| \, dx = \frac{1}{n\delta_0 \pi},
\]

получаем

\[
(6) \quad \frac{1}{n\delta_0 \pi} \leq \sup_{f \in H(\delta_0)_{L}} a_n(f) = \sup_{f \in H(\delta_0)_{L}} b_n(f) \leq \frac{1}{2\pi \sin \frac{\pi}{2}}.
\]

Пусть, теперь, \(\delta_0 = \frac{2\pi}{k}, \quad k \geq 2, \quad k \in N \). Так как экстремальная функция \(f \) должна быть нечетна, то

\[
f(x) \sim \sum_{n=1}^{\infty} b_n(f) \sin nx.
\]
Тогда

\[f \left(x + \frac{\pi}{kn} \right) - f \left(x - \frac{\pi}{kn} \right) \sim \sum_{v=1}^{\infty} 2b_n(f) \sin \frac{v\pi}{kn} \cos vx. \]

Если \(v = knj, j = 1, 2, \ldots \), то

\[f \left(x + \frac{\pi}{kn} \right) - f \left(x - \frac{\pi}{kn} \right) = \sum_{v\neq knj} 2b_n(f) \sin \frac{v\pi}{kn} \cos vx, \]

и для любой 2\(\pi \)-периодической функции

\[\varphi(x) = \frac{a_0(f)}{2} + \sum_{j=1}^{\infty} [a_j(\varphi) \cos jx + b_j(\varphi) \sin jx], \]

\[b_n(f) = \frac{1}{2\pi \sin \frac{\pi}{k}} \int_{-\pi}^{\pi} \left[f \left(x + \frac{\pi}{kn} \right) - f \left(x - \frac{\pi}{kn} \right) \right] \left[\cos nx - \varphi(knx) \right] dx \]

откуда получаем

\[|b_n(\varphi)| \leq \frac{1}{2\pi \sin \frac{\pi}{k}} \inf_{\varphi} \max_{x \in [-\pi, \pi]} |\cos nx - \varphi(knx)| = \frac{1}{2\pi \sin \frac{\pi}{k}} \inf_{\varphi} \|\cos x - \varphi(kx)\|_{C[0, 2\pi]} \]

Так кат \(\Omega(\varphi(kx)) = \frac{2\pi}{k} \), то пользуясь леммой легко вычисляется, что

\[\inf_{\varphi} \|\cos x - \varphi(kx)\|_{C[0, 2\pi]} = \begin{cases} 1, & k = 2s, \ s = 1, 2, \ldots, \\ \cos \frac{\pi}{2k}, & k = 2s + 1, \ s = 1, 2, \ldots. \end{cases} \]

Для \(\delta_0 = \frac{2\pi}{n(2s+1)}, s = 1, 2, \ldots \),

\[b_n(f) \leq \frac{\cos \frac{\pi}{2(2s+1)}}{2\pi \sin \frac{\pi}{2\pi+1}} = \frac{1}{4\pi \sin \frac{\pi}{2\pi+1}}, \]

т.е.,

(7) \[\sup_{f \in H(\delta_0)} b_n(f) \leq \frac{1}{4\pi \sin \frac{\pi}{4\pi}}. \]

Из (6) и (7) получается утверждение первой части Теоремы 1. Из (7) для \(\delta_0 = \frac{2\pi}{3n} \) следует что

(8) \[\sup_{f \in H(\frac{2\pi}{3n})} b_n(f) \leq \frac{1}{2\pi}. \]
О коэффициентах фурье класса $W^{r} H(\delta_{0})_{L}$.

Для функции $g(x) = \frac{1}{2} \left[\delta \left(x - \frac{n\pi}{2} \right) - \delta \left(x + \frac{n\pi}{2} \right) \right]$, где δ функция Дирака, $\omega \left(g, \frac{2\pi}{2n} \right)_{L} = 1$.

(9) \[b_{n}(g) = \frac{1}{4\pi} \int_{-\pi}^{\pi} \left[\delta \left(x - \frac{\pi}{2n} \right) - \delta \left(x + \frac{\pi}{2n} \right) \right] \sin nxdx = \frac{1}{2\pi} \]

Из (8) и (9) следует

\[\sup_{f \in H(\frac{2\pi}{2n})_{L}} b_{n}(f) = \frac{1}{2\pi} \]

Пусть, теперь, $\delta_{0} > \frac{2\pi}{3n}$. Так как $\omega(g, \delta_{0}) = 1$, $b_{n}(g) = \frac{1}{2\pi}$,

тогда

\[b_{n}(f) \leq \frac{1}{2\pi} \omega \left(f, \frac{2\pi}{3n} \right) \leq \frac{1}{2\pi} \omega(f, \delta_{0})_{L} \]

Чем доказана и вторая часть Теоремы 1.

Теорема 2. Если $f \in W^{r} H(\delta_{0})_{L}$, то

\[\frac{1}{n^{r+1}\delta_{0}^{r}} \leq \sup a_{n}(f) = \sup b_{n}(f) \leq \begin{cases} \frac{2\pi}{3n}, & \delta_{0} \in (0, \frac{2\pi}{3n}] \\ \frac{2\pi}{n(2s+1)}, & \delta_{0} = \frac{2\pi}{n(2s+1)}, s = 1, 2, \ldots \end{cases} \]

$\sup a_{n}(f) = \sup b_{n}(f) = \frac{1}{2\pi n^{r}}, \quad \delta_{0} \in \left[\frac{2\pi}{3n}, \pi \right].$

Доказательство. Интегрируя по частям получаем что

\[a_{n}(f) = \frac{1}{\pi n^{r}} \int_{-\pi}^{\pi} f^{(r)}(x) \cos \left(nx + \frac{r\pi}{2} \right) dx, \]

\[b_{n}(f) = \frac{1}{\pi n^{r}} \int_{-\pi}^{\pi} f^{(r)}(x) \sin \left(nx + \frac{r\pi}{2} \right) dx \]

и повторяя те же самые рассуждения как в Теореме 1. получаем доказательство Теоремы 2.

Из Теоремы 1. и 2. получается асимптотическая формула как
Следствие. Если $f \in W^r H(\delta_0)_L \cap W^0 H(\delta_0)_L = H(\delta_0)_L$, то

$$\sup b_n(f) = \sup a_n(f) \approx \frac{1}{n^{r+1} \delta_0 \pi}$$

при $\delta_0 \to 0$.

Литература
