ALGORITHMIC DEFINITION OF FINITE MARKOV SEQUENCE1

D. Banjević and Z. Iković

0. Let $T = (t_1, t_2, \ldots, t_N)$ be a finite binary sequence. Following von Mises ideas, A.N. Kolmogorov \cite{1} defined the randomness of T with respect to the algorithm $R = (F, G, H)$ for selection of the subsequence of T. We give this definition in the following way:

The system of functions $F = (F_0, F_1, \ldots, F_{N-1})$, $F_0 = \text{const}$, defines a permutation (x_1, x_2, \ldots, x_N) of $(1, 2, \ldots, N)$ which depends on T, by

$$x_i = F_{i-1}(x_1, t_{x_1}; \ldots, x_{i-1}, t_{x_{i-1}}), \quad i = 1, 2, \ldots, N.$$

The systems of functions $H = (H_0, H_1, \ldots, H_N)$ and $G = (G_0, G_1, \ldots, G_{N-1})$ have the properties: $H_i, G_i \in \{0, 1\}$, $H_0 = \text{const}$, $H_N = 1$, $H_i(x_0, t_{x_1}; \ldots, x_{i-1}, t_{x_{i-1}}) \leq H_{i+1}(x_1, t_{x_1}; \ldots, x_{i+1}, t_{x_{i+1}})$, $G_0 = \text{const}$. Let $s = s(T) = \min\{i; H_i = 1\}$. The system (F, G, H) defines the subset $A \subset \{1, 2, \ldots, N\}$ in the following way: $x_k \in A$ if $1 \leq k \leq s$ and $G_{k-1}(x_1, t_{x_1}; \ldots, x_{k-1}, t_{x_{k-1}}) = 1$. Let $A = \{x_{i_1}, x_{i_2}, \ldots, x_{i_k}\}$, $x_{i_1} < x_{i_2} < \cdots x_{i_k}$. We select the subsequence $(t_{x_{i_1}}, t_{x_{i_2}}, \ldots, t_{x_{i_k}})$ of T by $R = (F, G, H)$.

The sequence T is (n, ε, p)-random $(1 \leq n \leq N, 0 < \varepsilon, 0 \leq p \leq 1)$ with respect to R if

$$v \geq n, \quad \text{and} \quad \left| \frac{1}{v} \sum_{k \in A} t_k - p \right| < \varepsilon$$

or if $v < n \cdot T$ is (n, ε, p)-random with respect to the system $\mathcal{R} = \{R_1, R_2, \ldots\}$ if it is (n, ε, p)-random with respect to each $R_i \in \mathcal{R}$.

Another approach to the algorithmical definition of randomness was given in \cite{2} and later developed for infinite set of sequences \cite{3, 4}. However, for finite set of sequences which we consider here, this approach is too broad to be successful applied (see discussion in \cite{5}).

1This research was supported by Odsek za mat. i mat. i astr. nauke, PMF Belgrade
Kolmogorov definition of random sequence in [1] corresponds in a way to Bernoulli sequence $B(p)$ in Probability theory. In this paper we define the randomness of T corresponding to homogenous Markov sequence $M(\alpha, \beta)$ with the states $\{0,1\}$ and the transition matrix \[
\begin{bmatrix}
\alpha & 1 - \alpha \\
1 - \beta & \beta
\end{bmatrix}
\] In this definition we follow Kolmogorov’s method.

1. It is reasonable that the definition of Markov sequence (MS) is based on the stability of the frequencies of transition from 0 and 1. We select a subsequence t_1, t_2, \ldots, t_k, $1 < i_1 < i_2 < \cdots < i_k \leq N$. Let $v_1 = \sum_{j=1}^{k} t_{i_j-1}$ and $v_0 = k - v_1 = \sum_{j=1}^{k} (1 - t_{i_j-1})$. Consider $\frac{1}{v_1} \sum_{j=1}^{k} t_{i_j-1} t_{i_j}$ - relative frequency of the transition from 1 to 1 and $\frac{1}{v_0} \sum_{j=1}^{k} (1 - t_{i_j-1})(1 - t_{i_j})$ - relative frequency of transition from 0 to 0. In accordance with the idea of MS, selection of a particular t_x in the subsequence should not depend on t_x, t_{x+1}, \ldots. It means that the selection of t_i occurs before the selection of t_j for $i < j$.

Let $R = (G, H)$ be a system of functions $H = (H_0, H_1, \ldots, H_N)$ and $G = (G_0, G_1, \ldots, G_{N-1})$ with the properties $H_i, G_i \in \{0,1\}$, $H_0 = \text{const}$, $H_N = 1$, $H_i(t_1, \ldots, t_i) \leq H_{i+1}(t_1, \ldots, t_{i+1})$, $G_0 = 0$.

Definition 1. The system $R = (G, H)$ is an algorithm for selection of the subsequence S of T, given by:

Let $s = s(T) = \min \{i; H_i = 1\}$. Let $A \subset \{1,2,\ldots,N\}$ be defined by $j \in A$ if $G_{i-1}(t_1, \ldots, t_{i-1}) = 1$. Let $A = \{i_1, i_2, \ldots, i_v\}$. Then $S = (t_{i_1}, t_{i_2}, \ldots, t_{i_v})$.

By definition 2 it follows that the system $R = (G, H)$ is a particular Kolmogorov algorithm $R' = (F, G, H)$ where $F_{i-1} = i$, $i = 1, 2, \ldots, N$.

Definition 2. The sequence T is $(n_0, n_1, \varepsilon_0, \varepsilon_1, \alpha, \beta)$-Markov (denoted by $M(n_0, n_1, \varepsilon_0, \varepsilon_1, \alpha, \beta)$, $1 \leq n_i \leq N$, $0 < \varepsilon_i, i = 0, 1, 0 \leq \alpha \leq 1, 0 \leq \beta \leq 1$) with respect to R if

(a) $v_0 \geq n_0$ and $\Delta_0 = \left| \frac{1}{v_0} \sum_{j \in A} (1 - t_{j-1})(1 - t_j) - \alpha \right| < \varepsilon_0$ or $v_0 < n_0$

(b) $v_1 \geq n_1$ and $\Delta_1 = \left| \frac{1}{v_1} \sum_{j \in A} t_{j-1} t_j - \beta \right| < \varepsilon_1$ or $v_1 < n_1$

The sequence T is $M(n_0, n_1, \varepsilon_0, \varepsilon_1, \alpha, \beta)$ with respect to the system $R = \{R_1, R_3, \ldots\}$ if it is $M(n_0, n_1, \varepsilon_0, \varepsilon_1, \alpha, \beta)$ with respect to each $R_i \in R$.

Definition 3. The sequence T is $(n_0, n_1, \varepsilon_0, \varepsilon_1, \alpha)$-Bernoulli (denoted by $B(n_0, n_1, \varepsilon_0, \varepsilon_1, \alpha)$) with respect to $R(\mathcal{R})$ if it is $M(n_0, n_1, \varepsilon_0, \varepsilon_1, \alpha, 1 - \alpha)$ with respect to $R(\mathcal{R})$.

Definition 3 follows from the idea that Bernoulli sequence is a particular Markov sequence for $\beta = 1 - \alpha$.
PROPOSITION 1. Let T be $B(n_0, n_1, \varepsilon_0, \varepsilon_1, \alpha)$ with respect to $R = (G, H)$. Then T is $(\max\{n_0, n_1\}, \max\{\varepsilon_0, \varepsilon_1\}, 1 - \alpha)$-random in the sense of Kolmogorov, with respect to the system $\{R_0, R_1\}$, $R_i = (F^j, G^j, H^j)$, $j = 0, 1$, where $H^j = H$, $j = 0, 1, F^j_{i-1} = i$, $i = 1, 2, \ldots, N$, $j = 0, 1$ and

$$G^j_{i-1} = \begin{cases} G_{i-1} & t_{i-1} = j, \\ 0 & t_{i-1} = 1 - j, \end{cases} \quad j = 0, 1.$$

PROOF. It is clear that R_0 is Kolmogorov algorithm. Let R select the subsequence $S = \{t_i\}, i \in A$ of T. Then R_0 selects the subsequence $S_0 = \{t_i\}, i \in B$ of S, which consists of elements proceeding zeros in T. Let S_0 have v elements. Evidently, $V = V_0$ and

$$\frac{1}{v} \sum_{i \in B} t_i - (1 - \alpha) = \frac{1}{v} \sum_{i \in B} (1 - t_i) - \alpha = \frac{1}{v} \sum_{i \in A} (1 - t_{i-1})(1 - t_i) - \alpha = \Delta_0.$$

Since T is $B(n_0, n_1, \varepsilon_0, \varepsilon_1, \alpha)$ it follows that $v_0 < n_0$ or $v_0 \geq n_0$ and $\Delta_0 < \varepsilon_0$, e.i. $v < n_0$ or $v \geq n_0$ and $\left| \frac{1}{v} \sum_{i \in B} t_i - (1 - \alpha) \right| < \varepsilon_0$. It means that T is $(n_0, \varepsilon_0, 1 - \alpha)$-random with respect to R_0. Similarly, T is $(n_1, \varepsilon_1, 1 - \alpha)$-random with respect to R_1.

Generally, let T be (n, ε, p)-random. Then T is (n, δ, ρ)- random for $m \geq n$, $\delta \geq \varepsilon$. Now since T is $(n_j, \varepsilon_j, 1 - \alpha)$-random with respect to R_j, $j = 0, 1$, it means that T is $(\max\{n_0, n_1\}, \max\{\varepsilon_0, \varepsilon_1\}, 1 - \alpha)$-random with respect to the system $\mathcal{R} = \{R_0, R_1\}$.

2. In this section we consider the existence of at least one MS for a given system \mathcal{R} with ρ algorithms.

Let $p(n, \varepsilon, \alpha) = P\left(\sup_{k \geq n} | \frac{S_k}{k} - \alpha | \geq \varepsilon \right)$ where random variable S_k have binomial distribution $b(k, \alpha)$.

PROPOSITION 2. Let system \mathcal{R} have ρ algorithms. If

$$\rho < \frac{1}{p(n_0, \varepsilon_0, \alpha) + p(n_1, \varepsilon_1, \beta)}$$

then there exists at least one $\mathcal{M}(n_0, n_1, \varepsilon_0, \varepsilon_1, \alpha, \beta)$ sequence with respect to R.

PROOF. Consider Markov probability distribution on the set $\{T\}$, with given initial distribution and transition matrix $\begin{bmatrix} \alpha & 1 - \alpha \\ 1 - \beta & \beta \end{bmatrix}$. Let $P(R)(P(\mathcal{R}))$ be the probability that T is non-Markov with respect to $R(\mathcal{R})$. Then (using the same notation as in Definition 2)

$$P(R) = P((v_0 \geq n_0, \Delta_0 \geq \varepsilon_0) \cup (v_1 \geq n_1, \Delta_1 \geq \varepsilon_1)) \geq P(v_0 \geq n_0, \Delta_0 \geq \varepsilon_0) + P(v_1 \geq n_1, \Delta_1 \geq \varepsilon_1).$$
Let $\xi_1, \xi_2, \ldots, \xi_i \in \{0, 1\}$ be a homogenous Markov chain with transition matrix
\[
\begin{bmatrix}
\alpha & 1 - \alpha \\
1 - \beta & \beta
\end{bmatrix}.
\]
We select the sequence of indices $i_1, i_3, \ldots, 1 \leq i_1 < i_2 \ldots$, such that $\xi_{i_1} = \xi_{i_2} = \cdots = 0$ and that the selection of i_j is independant of ξ_k, $k > i_j$, $j = 1, 2, \ldots$. Then the sequence $\xi_{i_1+1}, \xi_{i_2+1}, \ldots$ is a Bernoulli sequence where the probability of occuring 0 is α. Consider the sequence $\xi_1, \xi_2, \ldots, \xi_N$, as a part of infinite sequence ξ_1, ξ_2, \ldots, and a subsequence $\xi_{i_1+1}, \xi_{i_2+1}, \ldots \xi_{i_k+1}$ selected by R from $\xi_1, \xi_2, \ldots, \xi_N$. Let R^* be the algorithm defined for infinite sequence as the extension of R in the following way. R^* selects the same subsequence $\xi_{i_1+1}, \xi_{i_2+1}, \ldots \xi_{i_k+1}$ as R until $k \leq v_0$. For $k > v_0$ the selection is arbitrary (but in accordance with described rules of selection). Let η_1, η_2, \ldots be the selected subsequence. We define the stopping rule for R^* as

\[
\nu^*_0 = n_0 \text{ if } \left| \frac{1}{n_0} \sum_{i=1}^{n_0} \eta_i - (1 - \alpha) \right| \geq \varepsilon_0 \text{ and }
\nu^*_k = k, \ k > n_0, \text{ if } \left| \frac{1}{j} \sum_{i=0}^{j} \eta_i - (1 - \alpha) \right| < \varepsilon_0, \ j = n_0, n_0 + 1, \ldots k - 1 \text{ and }
\left| \frac{1}{k} \sum_{i=1}^{k} \eta_i - (1 - \alpha) \right| \geq \varepsilon_0.
\]

Then

\[
P(\nu^*_0 \geq n_0, \Delta^*_0 \geq \varepsilon_0) = P\left(\sup_{k \geq n_0} \left| \frac{S_k}{k} - (1 - \alpha) \right| \geq \varepsilon_0 \right) =
\]

\[
p(n_0, \varepsilon_0, 1 - \alpha) = p(n_0, \varepsilon_0, \alpha), \quad \Delta^*_0 = \left| \frac{1}{V_0} \sum_{i=1}^{v_0} \eta_i - (1 - \alpha) \right|.
\]

If T is non-Markov with respect to R, then each infinite sequence beginning with T is non-Markov with respect to R^*. So $P(\omega \geq n_0, \Delta_0 \geq \varepsilon_0) \leq p(n_0, \varepsilon_0, \alpha)$. In the same way $P(v_1 \geq n_1, \Delta_1 \geq \varepsilon_1) \leq p(n_1, \varepsilon_1, \beta)$ i.e. $P(R) \leq p(n_0, \varepsilon_0, \alpha) + p(n_1, \varepsilon_1, \beta)$ and $P(R) \leq \sum_{R \in R} P(R) \leq P[p(n_0, \varepsilon_0, \alpha) + p(n_1, \varepsilon_1, \beta)]$. If $\rho[p(n_0, \varepsilon_0, \alpha) + p(n_1, \varepsilon_1, \beta)] < 1$, then $P(R) < 1$ and the probability measure of the set of Markov sequence is $1 - P(R) < 0$, i.e. there exists at least one Markov sequence with respect to R.

Kolmogorov [1] gave the estimation $p(n, \varepsilon, \alpha) \leq 2e^{-n\varepsilon^2(1-\alpha)}$. If

\[
\rho < \frac{1}{2} \left[e^{-n\varepsilon_0^2(1-\varepsilon_0)} + e^{-n\varepsilon_1^2(1-\varepsilon_1)} \right]^{-1}
\]

than for each system with ρ algorithms and each α and β there exists $M(n_0, n_1, \varepsilon_0, \varepsilon_1, \alpha, \beta)$ sequence.
REFERENCES