Combinatorial bases of principal subspaces of modules for twisted affine Lie algebras of type $A_{2l-1}^{(2)}, D_l^{(2)}, E_6^{(2)}$ and $D_4^{(3)}$

Marijana Butorac and Christopher Sadowski

Abstract. We construct combinatorial bases of principal subspaces of standard modules of level $k \geq 1$ with highest weight $k\Lambda_0$ for the twisted affine Lie algebras of type $A_{2l-1}^{(2)}, D_l^{(2)}, E_6^{(2)}$ and $D_4^{(3)}$. Using these bases we directly calculate characters of principal subspaces.

Contents

1. Introduction 72
2. Preliminaries 74
 2.1. Dynkin diagram automorphisms 75
 2.2. The lattice vertex operator V_L and its twisted module V_L^T 77
 2.3. Twisted affine Lie algebras 80
 2.4. Gradings 81
 2.5. Higher levels 82
3. Principal subspaces 83
 3.1. Properties of $W_{L_k}^T$ 83
 3.2. Twisted quasi-particles 84
4. Combinatorial bases 85
 4.1. Relations among twisted quasi-particles 85
5. Proof of linear independence 92
 5.1. The projection π_R 92
 5.2. The maps $\Delta^T(\lambda, -z)$ 93
 5.3. The maps e_{α_i} 95
 5.4. A proof of linear independence 97
6. Characters of principal subspaces 99
Acknowledgement 103
References 103

Received March 15, 2018.
2010 Mathematics Subject Classification. Primary 17B67; Secondary 17B69, 05A19.
Key words and phrases. twisted affine Lie algebras, vertex operator algebras, principal subspaces, twisted quasi-particle bases.

ISSN 1076-9803/2019

71
1. Introduction

The study of principal subspaces of standard modules for untwisted affine Lie algebras was initiated in [FS] by Feigin and Stoyanovsky and was later extended by Georgiev in [G]. Motivated by the work of J. Lepowsky and M. Primc in [LP] and extending the earlier work of Feigin and Stoyanovsky, Georgiev constructed bases of principal subspaces of certain standard modules of the affine Lie algebra of type $A_l^{(1)}$. These bases were described by using certain coefficients of vertex operators, which are called quasi-particles. From quasi-particle bases, they directly obtained the characters (i.e. multi-graded dimensions) of principal subspaces. The work of Feigin and Stoyanovsky and Georgiev has since been extended in many ways by other authors (cf. [Ar], [Ba], [BPT], [Bu1]–[Bu3], [FFJMM], [J1]–[J2], [JP], [Kan], [Kaw1]–[Kaw2], [Ko1]–[Ko3], [MPe], [P], [T1]–[T3], and many others).

The study of principal subspaces of basic modules for twisted affine Lie algebras was initiated in [CalLM4], where a general setting was given and the principal subspace of the basic $A_2^{(2)}$-module was studied. This work was later extended in [CalMPe] and [PS1]–[PS2] to study the principal subspaces of the basic modules for all the twisted affine Lie algebras, and in [PSW] to a certain lattice setting. In each of these works the authors, using certain ideas from the untwisted affine Lie algebra setting found in [CapLM1]–[CapLM2] and [CalLM1]–[CalLM3] (see also [Cal1]–[Cal2], [S1]–[S2]), showed that the principal subspaces under consideration had certain presentations (i.e. could be defined in terms of certain generators and relations). Using these presentations, the authors constructed exact sequences among the principal subspaces and in this way obtained recursions satisfied by the characters of principal subspaces. Solving these recursions yields the characters of the principal subspaces of the basic modules for the twisted affine Lie algebras in each work.

Let ν be a Dynkin diagram automorphism of order v of a Lie algebra of type X where X is A_{2l-1} with $l \geq 2$, D_l with $l \geq 4$, or E_6. Denote by $\hat{\nu}$ the lifting of ν to the basic $X^{(1)}$-module $V_L \simeq L(\Lambda_0)$ constructed as a vertex operator algebra (cf [LL]) and the twisted V_L-module V_L^T, which is isomorphic to the basic vacuum module, which we denote $L^\nu(\Lambda_0)$, of the twisted affine Lie algebra $X^{(\nu)}$ (cf. [L1], [CalLM4]). The aim of this work is to determine the characters of the principal subspaces of the level $k \geq 1$ vacuum $X^{(\nu)}$-module $L^\nu(k\Lambda_0)$, which we denote by W^T_{Lk}, for the twisted affine Lie algebras of type $A_2^{(2)}$, for $l \geq 2$, $D_l^{(2)}$, for $l \geq 4$, $E_6^{(2)}$ and $D_4^{(3)}$, extending certain results found in [PS1]–[PS2]. The approach we use, however, is different than the approach found in [PS1]–[PS2]. By using vertex operator techniques we construct combinatorial bases of principal subspaces which are twisted analogues to those found in [G], and from which we obtain the characters of principal subspaces. In our proofs, we use level k analogues of certain maps originally developed and used in [CalLM4], [CalMPe], and
[PS1]–[PS2] analogously to how they were used in [G]. We note importantly
that, in the untwisted setting, certain modes of intertwining operators play
an important role in the proofs of linear independence of these bases. In our
twisted affine Lie algebra setting, we instead use other maps developed for
the twisted setting in [CalLM4].

More specifically, in this paper, following [G] and using certain results in
[Li], we construct bases using the coefficients

\[x_{r\alpha_i}(m) = \text{Res}_z \{ z^{m+r-1} x_{r\alpha_i}(z) \}, \]

of the twisted vertex operators

\[x_{r\alpha_i}(z) = \hat{Y}(x_{\alpha_i}(-1)^r 1, z), \]

which we, in complete analogy with the untwisted case, call twisted quasi-
particles of color \(i\), charge \(r\) and energy \(-m\). Similar to the untwisted case,
(see [Bu1]–[Bu3], [JP]), first we prove certain relations for twisted quasi-
particles of the form \(x_{r\alpha_i}(m) x_{r'\alpha_j}(m')\) for \(r \leq r'\) and \(x_{r\alpha_i}(m) x_{r'\alpha_j}(m')\),
where \(1 \leq r, r' \leq k\), which we call relations among twisted quasi-particles.
With these relations, along with the relations \(x_{(k+1)\alpha_i}(z) = 0\), we build
twisted quasi-particle spanning sets of the principal subspaces \(W_{L_k}^T\). The re-
sulting bases are analogous to the quasi-particle bases of principal subspaces
in the case of untwisted affine Lie algebras of type \(ADE\) in the sense that
energies of twisted quasi-particles in the twisted quasi-particle spanning sets
satisfy similar difference conditions, which are generalizations of difference
two conditions found in [FS] and [G]. As in the untwisted case found in
[G], in the proof of linear independence of our spanning sets we consider
the principal subspace as a subspace of tensor product of \(k\) principal subspaces
of basic modules. This enables us to use the above-mentioned maps ob-
tained from the construction of level one twisted modules for lattice vertex
operator algebras from [CalLM4] and [PS1]–[PS2]. Finally, we note that in
this paper we do not consider the case of the principal subspaces \(W_{L_k}^T\)
for the twisted affine Lie algebra of type \(A^{(2)}_{2l}\), which will be considered in future
work.

Our main result in this work is as follows: denote by \(\text{ch} \ W_{L_k}^T\) the character
of the principal subspace \(W_{L_k}^T\). The characters of the principal subspaces are:

Theorem 1.1. We have for \(A^{(2)}_{2l-1}\):

\[
\text{ch} \ W_{L_k}^T = \sum_{\begin{array}{c}
r_1(1) \geq \cdots \geq r_1(k) \\
\vdots \\
r_{l-1}(1) \geq \cdots \geq r_{l-1}(k) \\
\end{array}} \frac{q^\frac{1}{2} \sum_{i=1}^{l-1} \sum_{j=1}^{k} r_i^{(s)} \sum_{i=2}^{l} \sum_{j=1}^{k} r_i^{(s)} r_i^{(s)} \prod_{i=1}^{l-1} y_{i_1}^{(1)} \cdots y_{i_k}^{(k)}}{\prod_{i=1}^{l-1} \left(q^{\frac{1}{2}} ; q^{\frac{1}{2}} \right)_{r_i^{(1)}} \cdots \left(q^{\frac{1}{2}} ; q^{\frac{1}{2}} \right)_{r_i^{(k)}}}.
\]
\[\sum_{r_i^{(1)} \geq \cdots \geq r_i^{(k)} \geq 0} \frac{q^{\sum_{s=1}^k r_i^{(s)^2} - \sum_{s=1}^k r_{i-1}^{(s)^2}} y_1^{(1)} \cdots y_k^{(1)} + \cdots + y_1^{(k)}}{(q)_{r_i^{(1)}} \cdots (q)_{r_i^{(k)}}} \]

for \(D_{1(2)} \):

\[\text{ch } W_{L_k}^T = \sum_{r_i^{(1)} \geq \cdots \geq r_i^{(6)} \geq 0} \frac{q^{\frac{1}{2} \sum_{s=1}^k r_i^{(s)^2} - \sum_{s=1}^k r_2^{(s)^2}} \prod_{i=1,2} (q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_i^{(1)}} \cdots (q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_i^{(k)}} y_i^{(1)} \cdots y_i^{(k)}}{\prod_{i=1}^{l-2} (q)_{r_i^{(1)}} \cdots (q)_{r_i^{(k)}}} \]

for \(E_{6(2)} \):

\[\text{ch } W_{L_k}^T = \sum_{r_i^{(1)} \geq \cdots \geq r_i^{(6)} \geq 0} \frac{q^{\frac{1}{2} \sum_{s=1}^k r_i^{(s)^2} - \sum_{s=1}^k r_2^{(s)^2}} \prod_{i=1,2} (q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_i^{(1)}} \cdots (q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_i^{(k)}} y_i^{(1)} \cdots y_i^{(k)}}{\prod_{i=1}^{l-2} (q)_{r_i^{(1)}} \cdots (q)_{r_i^{(k)}}} \]

for \(D_{4(3)} \):

\[\text{ch } W_{L_k}^T = \sum_{r_i^{(1)} \geq \cdots \geq r_i^{(4)} \geq 0} \frac{q^{\frac{1}{2} \sum_{s=1}^k r_i^{(s)^2}} y_1^{(1)} \cdots y_4^{(1)} + \cdots + y_1^{(k)}}{(q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_1^{(1)}} \cdots (q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_1^{(k)}}} \]

and for \(D_{4(3)} \):

\[\sum_{r_i^{(1)} \geq \cdots \geq r_i^{(4)} \geq 0} \frac{q^{\sum_{s=1}^k r_i^{(s)^2} - \sum_{s=1}^k r_2^{(s)^2}} y_1^{(1)} \cdots y_4^{(1)} + \cdots + y_1^{(k)}}{(q)_{r_1^{(1)}} \cdots (q)_{r_1^{(k)}} (q)_{r_2^{(1)}} \cdots (q)_{r_2^{(k)}}} \]

2. Preliminaries

In this section, we very closely follow the setting developed in [PS1]–[PS2] (cf. also [L1] and [CalLM4]), and recall many details from these works.

Let \(\mathfrak{g} \) be a finite dimensional simple Lie algebra of type \(A_{2l-1}, D_l, \) or \(E_6 \), with root lattice

\[L = \mathbb{Z} \alpha_1 \oplus \cdots \oplus \mathbb{Z} \alpha_D, \]

where \(D \) is the rank of \(\mathfrak{g} \), with its standard nondegenerate symmetric bilinear form \(\langle \cdot, \cdot \rangle \). Also, let

\[\mathfrak{h} = L \otimes \mathbb{C}. \]
We take the following labelings of the Dynkin diagrams of our Lie algebras:

Type A_{2l-1}:

\[
\begin{array}{cccccccc}
\circ & \circ & \cdots & \circ & \circ & \cdots & \circ & \circ \\
\alpha_1 & \alpha_2 & & \alpha_{l-1} & \alpha_l & & \alpha_{2l-2} & \alpha_{2l-1}
\end{array}
\]

Type D_l:

\[
\begin{array}{cccc}
\circ & \circ & \cdots & \circ \\
\alpha_1 & \alpha_2 & & \alpha_{l-2} \alpha_{l-1}
\end{array}
\]

Type E_6:

\[
\begin{array}{cccccc}
\circ & \circ & \circ & \circ & \circ \\
\alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \alpha_5 & \alpha_6
\end{array}
\]

In the case of D_4, we use the labeling:

\[
\begin{array}{ccc}
\circ & \circ & \circ \\
\alpha_1 & \alpha_2 & \alpha_3
\end{array}
\]

Remark 2.1. We note here that in [PS2], the labeling used for E_6 was:

\[
\begin{array}{cccccc}
\circ & \circ & \circ & \circ & \circ & \circ \\
\alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \alpha_5 & \alpha_6
\end{array}
\]

and in [PS1], the labeling used for D_4 was:

\[
\begin{array}{ccc}
\circ & \circ & \circ \\
\alpha_1 & \alpha_2 & \alpha_3
\end{array}
\]

and we change the labeling in this work for notational simplicity. Later in the work, we will see that the roles of operators corresponding to α_4 and α_6 in the case of E_6 and the roles of operators corresponding to α_1 and α_2 in the case of D_4 will be swapped compared to their counterparts found in [PS2] and [PS1].

2.1. Dynkin diagram automorphisms. Let ν be a Dynkin diagram automorphism of \mathfrak{g} of order ν, extended to all of \mathfrak{h}. In the case that $\nu = 2$, we let $\eta = -1$ be a primitive second root of unity and set $\eta_0 = \eta$, and in the case that $\nu = 3$ we let η be a cube root of unity and set $\eta_0 = -\eta$. Following [CalLM4] and [PS1]–[PS2], we consider two central extensions of L by the group $\langle \eta_0 \rangle$, denoted by \hat{L} and \hat{L}_ν, with commutator maps C_0 and C and associated normalized 2-cocycles ϵ_{C_0} and ϵ_C, respectively:

\[
1 \rightarrow \langle \eta_0 \rangle \rightarrow \hat{L} \rightarrow L \rightarrow 1
\]
and
\[1 \rightarrow \langle \eta_0 \rangle \rightarrow \hat{L}_\nu \rightarrow L \rightarrow 1 \]

We define commutator maps \(C_0 \) and \(C \) by
\[
C_0 : L \times L \rightarrow \mathbb{C}^\times
\]
\[
(\alpha, \beta) \mapsto (-1)^{\langle \alpha, \beta \rangle}
\]
and
\[
C(\alpha, \beta) = \prod_{j=0}^{v-1} (-\eta_j)^{\langle \nu^j a, \beta \rangle}.
\]

Following [L1] and [CalLM4], we let
\[
e : L \rightarrow \hat{L}
\]
\[
\alpha \mapsto e_\alpha
\]
be a normalized section of \(\hat{L} \) so that
\[
e_0 = 1
\]
and
\[
e_\alpha \overline{e_\alpha} = \alpha \text{ for all } \alpha \in L,
\]
satisfying
\[
e_\alpha e_\beta = e_{C_0(\alpha, \beta)} e_{\alpha + \beta} \text{ for all } \alpha, \beta \in L.
\]

We choose our 2-cocycle to be
\[
\epsilon_{C_0}(\alpha_i, \alpha_j) = \begin{cases}
1 & \text{if } i \leq j \\
(-1)^{\langle \alpha_i, \alpha_j \rangle} & \text{if } i > j
\end{cases}
\]

The 2-cocycles \(\epsilon_C \) and \(\epsilon_{C_0} \) are related by (see Equation 2.21 of [CalLM4])
\[
\epsilon_{C_0}(\alpha, \beta) = \prod_{-\frac{v}{2} < j < 0} (-\eta^{-j})^{\langle \nu^{-j} a, \beta \rangle} \epsilon_C(\alpha, \beta).
\]

We now lift the isometry \(\nu \) of \(L \) to an automorphism \(\hat{\nu} \) of \(\hat{L} \) such that
\[
\overline{\nu a} = \nu \overline{a} \quad \text{for} \quad a \in \hat{L}.
\]
and choose \(\hat{\nu} \) so that
\[
\hat{\nu} a = a \quad \text{if} \quad \nu \overline{a} = \overline{a},
\]
and thus \(\hat{\nu}^2 = 1 \) if \(\nu \) has order 2 and \(\hat{\nu}^3 = 1 \) if \(\nu \) has order 3. Indeed, set
\[
\hat{\nu} e_\alpha = \psi(\alpha) e_{\nu a}
\]
where $\psi : L \to \langle \eta \rangle$ is defined by
\[
\psi(\alpha) = \begin{cases}
\epsilon_{C_0}(\alpha, \alpha) & \text{if } L \text{ is type } A_{2l-1} \\
1 & \text{if } L \text{ is type } D_l \text{ and the order of } \nu \text{ is } 2 \\
(-1)^{r_3 r_4} \epsilon_{C_0}(\alpha, \alpha) & \text{if } L \text{ is type } E_6 \text{ and } \alpha = \sum_{i=1}^{6} r_i \alpha_i \\
(-1)^{r_2} \epsilon_{C_0}(\alpha, \alpha) & \text{if } L \text{ is of type } D_4, \alpha = \sum_{i=1}^{4} r_i \alpha_i \text{ and the order of } \nu \text{ is } 3.
\end{cases}
\]

From [PS1]–[PS2], we have that:
\[
\epsilon_{C_0}(\nu \alpha, \nu \beta) = \begin{cases}
\epsilon_{C_0}(\beta, \alpha) & \text{if } L \text{ is type } A_{2l-1} \\
\epsilon_{C_0}(\alpha, \beta) & \text{if } L \text{ is type } D_l \\
(-1)^{r_4 r_3 + r_3 r_4} \epsilon_{C_0}(\beta, \alpha) & \text{if } L \text{ is type } E_6, \alpha = \sum_{i=1}^{6} r_i \alpha_i \text{ and } \beta = \sum_{i=1}^{6} s_i \alpha_i \\
(-1)^{r_2} \epsilon_{C_0}(\beta, \alpha) & \text{if } L \text{ is of type } D_4, \alpha = \sum_{i=1}^{4} r_i \alpha_i \text{ and } \beta = \sum_{i=1}^{3} s_i \alpha_i.
\end{cases}
\]

As in [PS1]–[PS2], we have that
\[
\hat{\nu}(e_{\alpha_i}) = e_{\nu \alpha_i}
\]
for each simple root α_i.

2.2. The lattice vertex operator V_L and its twisted module V^T_L.

We assume that the reader is familiar with the construction of the lattice vertex operator algebra V_L (cf. [FLM1] and [LL]), and recall some important details of this construction. In particular, we follow Section 2 of [CalLM4].

We view \mathfrak{h} as an abelian Lie algebra, and let
\[
\hat{\mathfrak{h}} = \mathfrak{h} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}c
\]
with the usual bracket, and let
\[
\hat{\mathfrak{h}}^- = \mathfrak{h} \otimes t^{-1} \mathbb{C}[t^{-1}].
\]

We have that
\[
V_L \cong S(\hat{\mathfrak{h}}^-) \otimes \mathbb{C}[L]
\]
linearly. We extend $\hat{\nu}$ to an automorphism of V_L, which we also call $\hat{\nu}$, by
\[
\hat{\nu} = \nu \otimes \hat{\nu}.
\]

Let
\[
\mathfrak{h}_{(m)} = \{ x \in \mathfrak{h} | \nu(x) = \eta^m x \}.
\]
We have that
\[
\mathfrak{h} = \coprod_{m \in \mathbb{Z}/\nu \mathbb{Z}} \mathfrak{h}_{(m)}.
\]

We form the twisted affine Lie algebra
\[
\hat{\mathfrak{h}}[\nu] = \coprod_{m \in \mathbb{Z}} \mathfrak{h}_{(m)} \otimes t^m/\nu
\]
where
\[[\alpha \otimes t^m, \beta \otimes t^n] = \langle \alpha, \beta \rangle m\delta_{m+n,0}c \]
for \(m, n \in \frac{1}{v}\mathbb{Z} \) and \(\alpha \in \mathfrak{h}(vm) \) and \(\beta \in \mathfrak{h}(vn) \) and \(c \) is central. The Lie algebra \(\hat{\mathfrak{h}}[\nu] \) is \(\frac{1}{v}\mathbb{Z} \)-graded by weights:
\[\text{wt}(\alpha \otimes t^m) = -m \quad \text{and} \quad \text{wt}(c) = 0. \]
Define the Heisenberg subalgebra \(\hat{\mathfrak{h}}[\nu]_{\frac{1}{v}\mathbb{Z}} \)
of \(\hat{\mathfrak{h}}[\nu] \), the subalgebras
\[\hat{\mathfrak{h}}[\nu]^\pm = \prod_{m \in \frac{1}{v}\mathbb{Z}} \mathfrak{h}(vm) \otimes t^m \]
of \(\hat{\mathfrak{h}}[\nu]_{\frac{1}{v}\mathbb{Z}} \), and the induced module
\[S[\nu] = U\left(\hat{\mathfrak{h}}[\nu] \right) \otimes \prod_{m \geq 0} \mathfrak{h}(vm) \otimes t^m \oplus \mathbb{C}c \cong S\left(\hat{\mathfrak{h}}[\nu]^- \right), \]
which is \(\mathbb{Q} \)-graded such that
\[\text{wt}(1) = \frac{1}{4v^2} \sum_{j=1}^{v-1} j(v-j)\dim\mathfrak{h}(j). \]
Following [L1] and [CalLM4], we set
\[N = (1 - P_0)\mathfrak{h} \cap L, \]
where \(P_0 \) is the projection of \(\mathfrak{h} \) onto \(\mathfrak{h}(0) \). In particular, we define
\[\alpha(0) = P_0\alpha = \frac{1}{v} \sum_{i=0}^{v} \nu^i \alpha \]
In the case that \(v = 2 \), we have that
\[N = \prod_{i=1}^{D} \mathbb{Z}(\alpha_i - \nu \alpha_i) \]
and when \(v = 3 \) we have that:
\[N = \{ r_1\alpha_1 + r_3\alpha_3 + r_4\alpha_4 \in L \mid r_1 + r_3 + r_4 = 0 \}. \]
Using Proposition 6.2 of [L1], let \(\mathbb{C}_\tau \) denote the one dimensional \(\hat{N} \)-module \(\mathbb{C} \) with character \(\tau \) and write
\[T = \mathbb{C}_\tau. \]
Consider the induced \(\hat{L}_\nu \)-module
\[UT = \mathbb{C}[\hat{L}_\nu] \otimes_{\mathbb{C}[\hat{N}]} T \cong \mathbb{C}[L/N], \]
which is graded by weights and on which \(\hat{L}_\nu, \mathfrak{h}_{(0)} \), and \(z^h \) for \(h \in \mathfrak{h}_{(0)} \) all naturally act. Set

\[
V_L^T = S[\nu] \otimes U_T \cong S \left(\mathfrak{h}[\nu]^- \right) \otimes \mathbb{C}[L/N],
\]

which is naturally acted upon by \(\hat{L}_\nu, \hat{h}_{\pm \mathbb{Z}}, \mathfrak{h}_{(0)} \), and \(z^h \) for \(h \in \mathfrak{h} \).

For each \(\alpha \in \mathfrak{h} \) and \(m \in \frac{1}{v} \mathbb{Z} \) define the operators on \(V_L^T \)

\[
\alpha_{(vm)} \otimes t^m \mapsto \alpha^{\hat{\nu}}(m),
\]

where \(\alpha_{(vm)} \) is the projection of \(\alpha \) onto \(\mathfrak{h}_{(vm)} \), and set

\[
\alpha^{\hat{\nu}}(z) = \sum_{m \in \frac{1}{v} \mathbb{Z}} \alpha^{\hat{\nu}}(m) z^{-m-1}.
\]

Of most importance will be the \(\hat{\nu} \)-twisted vertex operators acting on \(V_L^T \) for each \(e_\alpha \in \hat{L} \)

\[
Y^{\hat{\nu}}(e_\alpha, z) = v^{-\frac{(\alpha,\alpha)}{4}} \sigma(\alpha) E^{-(\alpha, z)} E^{+}(\alpha, z) e_\alpha z^\alpha_{(0)} \frac{1}{2} \sum_{m \in \frac{1}{v} \mathbb{Z}} \delta_{\eta^\frac{1}{2}(\alpha,m)} z^{-m} = Y^{\hat{\nu}}(z).
\]

as defined in [L1], where

\[
E^{\pm}(\alpha, z) = \exp \left(\sum_{m \in \pm \frac{1}{v} \mathbb{Z}} \frac{-\alpha_{(vm)}(m)}{m} z^{-m} \right),
\]

and

\[
\sigma(\alpha) = 1 \text{ when } v = 2
\]

and

\[
\sigma(\alpha) = (1 - \eta^2)^{(\nu_\alpha,\alpha)} \text{ when } v = 3
\]

for \(\alpha \in \mathfrak{h} \). For \(m \in \frac{1}{v} \mathbb{Z} \) and \(\alpha \in \mathfrak{L} \) define the component operators \(x^{\hat{\nu}}_\alpha(m) \) by

\[
Y^{\hat{\nu}}(e_\alpha, z) = \sum_{m \in \frac{1}{v} \mathbb{Z}} x^{\hat{\nu}}_\alpha(m) z^{-m-\frac{(\nu_\alpha,\alpha)}{4}} = x^{\hat{\nu}}_\alpha(z).
\]

We note here that \(V_L^T \) is a \(\hat{\nu} \)-twisted module for \(V_L \), and in particular it satisfies the twisted Jacobi identity:

\[
x_0^{-1} \delta \left(\frac{x_1 - x_2}{x_0} \right) Y^{\hat{\nu}}(u, x_1) Y^{\hat{\nu}}(w, x_2) - x_0^{-1} \delta \left(\frac{x_2 - x_1}{-x_0} \right) Y^{\hat{\nu}}(w, x_2) Y^{\hat{\nu}}(u, x_1)
\]

\[
= x_2^{-1} \frac{1}{v} \sum_{j \in \mathbb{Z}/v \mathbb{Z}} \delta \left(\eta^j \frac{(x_1 - x_0)^{1/v}}{x_2^{1/v}} \right) Y^{\hat{\nu}}(Y(\hat{\nu}^j u, x_0) w, x_2)
\]

for \(u, w \in V_L \).
2.3. Twisted affine Lie algebras. We now construct the twisted affine Lie algebras of type $A^{(2)}_{2l-1}$, $D^{(2)}_l$, $E^{(2)}_6$, and $D^{(3)}_4$, and give them an action on V^T_L. Define the vector space

$$g = h \oplus \bigoplus_{\alpha \in \Delta} \mathbb{C} x_\alpha,$$

where \{x_\alpha\} is a set of symbols, and Δ is the set of roots corresponding to L.

We give the vector space g the structure of a Lie algebra via the bracket defined

$$[h, x_\alpha] = \langle h, \alpha \rangle x_\alpha, \quad [h, h] = 0$$

where $h \in h$ and $\alpha \in \Delta$ and

$$[x_\alpha, x_\beta] = \begin{cases} \varepsilon_C(\alpha, -\alpha)\alpha & \text{if } \alpha + \beta = 0 \\ \varepsilon_C(\alpha, \beta) x_{\alpha+\beta} & \text{if } \alpha + \beta \in \Delta \\ 0 & \text{otherwise.} \end{cases}$$

We note that g is a Lie algebra isomorphic to one of type A^{2l-1}, D_l, or E_6 depending on the choice of L (cf. [FLM2]). We also extend the bilinear form $\langle \cdot, \cdot \rangle$ to g by

$$\langle h, x_\alpha \rangle = \langle x_\alpha, h \rangle = 0$$

and

$$\langle x_\alpha, x_\beta \rangle = \begin{cases} \varepsilon_C(\alpha, -\alpha) & \text{if } \alpha + \beta = 0 \\ 0 & \text{if } \alpha + \beta \neq 0 \end{cases}$$

Following [L1], [CalLM4], and [PS1]–[PS2], we use our extension of $\nu : L \to L$ to lift the automorphism $\nu : h \to h$ to an automorphism $\hat{\nu} : g \to g$ by setting

$$\hat{\nu}x_\alpha = \psi(\alpha)x_{\nu\alpha}$$

for all $\alpha \in \Delta$. Here, we are using our particular choices of $\hat{\nu}$ (extended to $\mathbb{C}\{L\}$) and section e.

For $m \in \mathbb{Z}$ set

$$g(m) = \{ x \in g \mid \hat{\nu}(x) = \eta^m x \}.$$

Form the $\hat{\nu}$-twisted affine Lie algebra associated to g and $\hat{\nu}$:

$$\hat{g}[\hat{\nu}] = \bigoplus_{m \in \frac{1}{\eta} \mathbb{Z}} g(um) \otimes t^m \oplus \mathbb{C} c$$

with

$$[x \otimes t^m, y \otimes t^n] = [x, y] \otimes t^{m+n} + \langle x, y \rangle m \delta_{m+n,0} c$$

and

$$[c, \hat{g}[\hat{\nu}]] = 0,$$

for $m, n \in \frac{1}{\eta} \mathbb{Z}, x \in g(um)$, and $y \in g(um)$. Adjoining the degree operator d to $\hat{g}[\hat{\nu}]$, we define

$$\hat{\mathfrak{g}}[\hat{\nu}] = \hat{g}[\hat{\nu}] \oplus \mathbb{C} d,$$
where
\[[d, x \otimes t^n] = nx \otimes t^n, \]
for \(x \in g_{(vm)}, n \in \frac{1}{v}Z \) and \([d, c] = 0\). The Lie algebra \(\tilde{g}[\hat{\nu}] \) is isomorphic to \(A_{2l-1}^{(2)}, D_l^{(2)}, E_6^{(2)}, \) or \(D_4^{(3)} \) depending on the choice of \(L \) and \(\nu \), and is \(\frac{1}{v}Z \)-graded. We give \(V_L^T \) the structure of a \(\tilde{g}[\hat{\nu}] \)-module by:

Theorem 2.1. (Theorem 3.1 [CalLM4], Theorem 9.1 [L1], Theorem 3 [FLM1])

The representation of \(\tilde{h}[\nu] \) on \(V_L^T \) extends uniquely to a Lie algebra representation of \(\tilde{g}[\hat{\nu}] \) on \(V_L^T \) such that
\[(x_\alpha)(vm) \otimes t^m \mapsto x_\alpha^\nu(m) \]
for all \(m \in \frac{1}{v}Z \) and \(\alpha \in L \). Moreover \(V_L^T \) is irreducible as a \(\tilde{g}[\hat{\nu}] \)-module.

2.4. Gradings. As in Section 2 of [CalLM4] (also Section 6 of [L1]) we have a tensor product grading on \(V_L^T \) given by the action of \(\hat{L}_0 \), where
\[Y(\omega, z) = \sum_{m \in Z} L^0(m) z^{-m-2}, \]
which we call the weight grading. In particular, we have
\[\text{wt}(1) = \frac{l - 1}{16}, \text{ for } A_{2l-1} \]
\[\text{wt}(1) = \frac{1}{16}, \text{ for } D_l \text{ when } v = 2 \]
\[\text{wt}(1) = \frac{1}{8}, \text{ for } E_6, \]
\[\text{wt}(1) = \frac{1}{9}, \text{ for } D_4 \text{ when } v = 3. \]

From [PS1]–[PS2], we recall that
\[\text{wt}(x_\alpha^\nu(m)) = -m - 1 + \frac{1}{2} \langle \alpha, \alpha \rangle \]
for \(m \in \frac{1}{v}Z \) and \(\alpha \in L \).

We endow \(V_L^T \) with charge gradings (see [PS1]–[PS2]). In particular, in the case of \(A_{2l-1} \), we have
\[\text{ch}(x_\alpha^\nu(m)) = \langle 2 \langle \alpha, (\lambda_1)_0 \rangle, \ldots, 2 \langle \alpha, (\lambda_{l-1})_0 \rangle, \langle \alpha, (\lambda_l)_0 \rangle \rangle. \]

In the case of \(D_l \) when \(v = 2 \) we have
\[\text{ch}(x_\alpha^\nu(m)) = \langle \langle \alpha, (\lambda_1)_0 \rangle, \ldots, \langle \alpha, (\lambda_{l-2})_0 \rangle, 2 \langle \alpha, (\lambda_{l-1})_0 \rangle \rangle. \]

In the \(E_6 \) case we have
\[\text{ch}(x_\alpha^\nu(m)) = \langle 2 \langle \alpha, (\lambda_1)_0 \rangle, 2 \langle \alpha, (\lambda_2)_0 \rangle, \langle \alpha, (\lambda_3)_0 \rangle, \langle \alpha, (\lambda_4)_0 \rangle \rangle, \]
and finally in the case of \(D_4 \) when \(v = 3 \) we have
\[\text{ch}(x_\alpha^\nu(m)) = \langle 3 \langle \alpha, (\lambda_1)_0 \rangle, \langle \alpha, (\lambda_2)_0 \rangle \rangle. \]
We note that the λ_i here are the fundamental weights of the underlying finite dimensional Lie algebra \mathfrak{g}, dual to the roots:

$$\langle \lambda_i, \alpha_j \rangle = \delta_{i,j}$$

with $1 \leq i, j \leq \text{rank}(\mathfrak{g})$.

2.5. Higher levels.

The primary focus of this section so far has been the construction of V^T_L, the basic module for the twisted affine Lie algebra $\hat{\mathfrak{g}}[\hat{\nu}]$. In the remainder of this work we will consider the standard \tilde{V} construction of $\hat{\mathfrak{g}}[\hat{\nu}]$.

Since $L^\delta(k\Lambda_0)$ is a faithful $\hat{\nu}$-twisted $L(k\Lambda_0)$-module (see [Li]), we note that when $k = 1$, we have $L^\delta(\Lambda_0) \cong V^T_L$.

In this way we realize $L^\delta(k\Lambda_0)$ as a submodule of the tensor product of k copies of the basic module $V^T_L \cong L^\delta(\Lambda_0)$ as follows:

$$L^\delta(k\Lambda_0) \cong U(\hat{\mathfrak{g}}[\hat{\nu}]) \cdot V_L \subset V_L^T \otimes \cdots \otimes V_L^T = V_L^{T \otimes k},$$

where $V_L^T = 1_T \otimes 1_T \otimes \cdots \otimes 1_T$ is a highest weight vector of $L^\delta(k\Lambda_0)$ and where 1_T is a highest weight vector of V_L^T (cf. [Kac]).

It is known that $V_L^{T \otimes k} = V_L \otimes \cdots \otimes V_L$ has a structure of vertex operator algebra. If we denote by $\hat{\nu}$ the automorphism $\hat{\nu} \otimes \cdots \otimes \hat{\nu}$ of the vertex operator algebra $V_L^{T \otimes k}$, then we have $\hat{\nu}^v = 1$ and one can also define vertex operators corresponding to elements $v_1 \otimes \cdots \otimes v_k \in V_L^{T \otimes k}$ as tensor products of twisted vertex operators on the appropriate tensor factors $Y^\delta(v_1, z) \otimes \cdots \otimes Y^\delta(v_k, z)$.

In this way $V_L^{T \otimes k}$ becomes an irreducible $\hat{\nu}$-twisted module for the vertex operator algebra V_L^T (cf. [Li]), with

$$Y^\delta(x_{\alpha}(-1) \cdot (1 \otimes \cdots \otimes 1), z) = \sum_{m \in \frac{1}{z} \mathbb{Z}} x^\delta_{\alpha}(m) z^{-m-1}.$$
3. Principal subspaces

In this section we define the notion of principal subspace of $L^\hat{\nu}(k\Lambda_0)$ and twisted quasi-particles which we will use in the description of our bases.

First, denote by
$$ n = \prod_{\alpha \in \Delta^+} \mathbb{C} x_\alpha, $$
the ν-stable Lie subalgebra of \mathfrak{g} (the nilradical of a Borel subalgebra), its $\hat{\nu}$-twisted affinization
$$ \hat{n}[\hat{\nu}] = \prod_{m \in \frac{1}{2} \mathbb{Z}} n_{(vm)} \otimes t^m \oplus \mathbb{C} c $$
and the subalgebra of $\hat{n}[\hat{\nu}]$
$$ \overline{n}[\hat{\nu}] = \prod_{m \in \frac{1}{2} \mathbb{Z}} n_{(vm)} \otimes t^m. $$

Following [FS] (see also [CalLM4], [CalMPe], and [PS1]–[PS2]), we define the principal subspace $W^T_{L_k}$ of $L^\hat{\nu}(k\Lambda_0)$ as:
$$ W^T_{L_k} = U(\overline{n}[\hat{\nu}]) \cdot v_L. $$

3.1. Properties of $W^T_{L_k}$. We now recall some important properties of the operators $x^\hat{\nu}_\alpha(m)$ on $W^T_{L_k}$. We recall from [PS1]–[PS2] that
$$ x^\hat{\nu}_\alpha(m) = x^\hat{\nu}_\alpha(m) \text{ for } m \in \mathbb{Z} $$
$$ x^\hat{\nu}_\alpha(m) = -x^\hat{\nu}_\alpha(m) \text{ for } m \in \frac{1}{2} + \mathbb{Z}. $$
when $v = 2$ and that
$$ x^\hat{\nu}_{\alpha_3}(m) = x^\hat{\nu}_{\alpha_1}(m) \text{ for } m \in \mathbb{Z} $$
$$ x^\hat{\nu}_{\alpha_3}(m) = \eta x^\hat{\nu}_{\alpha_1}(m) \text{ for } m \in \frac{1}{3} + \mathbb{Z} $$
$$ x^\hat{\nu}_{\alpha_3}(m) = \eta^2 x^\hat{\nu}_{\alpha_1}(m) \text{ for } m \in \frac{2}{3} + \mathbb{Z} $$
and
$$ x^\hat{\nu}_{\alpha_4}(m) = x^\hat{\nu}_{\alpha_1}(m) \text{ for } m \in \mathbb{Z} $$
$$ x^\hat{\nu}_{\alpha_4}(m) = \eta^2 x^\hat{\nu}_{\alpha_1}(m) \text{ for } m \in \frac{1}{3} + \mathbb{Z} $$
$$ x^\hat{\nu}_{\alpha_4}(m) = \eta x^\hat{\nu}_{\alpha_1}(m) \text{ for } m \in \frac{2}{3} + \mathbb{Z} $$
when $v = 3$. In particular, we need only choose one representative from the orbit of each simple root α_i when working with the operators $x^\hat{\nu}_{\alpha_i}(m)$.

For every simple root α_i consider the one-dimensional subalgebra of \mathfrak{g}
$$ n_{\alpha_i} = \mathbb{C} x_{\alpha_i}, $$
and their \(\hat{\nu} \)-twisted affinizations

\[
\hat{\Pi}_{\alpha_i}[\hat{\nu}] = \prod_{m \in \frac{1}{v} \mathbb{Z}} n_{\alpha_i (vm)} \otimes t^m.
\]

In the case of \(A_{2l-1}^{(2)} \) we define a special subspace of \(\hat{\Pi}[\hat{\nu}] \)

\[
U = U(\hat{\Pi}_{\alpha_l}[\hat{\nu}])U(\hat{\Pi}_{\alpha_{l-1}}[\hat{\nu}]) \cdots U(\hat{\Pi}_{\alpha_1}[\hat{\nu}]).
\]

Similarly, for \(D_{l}^{(2)} \) we define

\[
U = U(\hat{\Pi}_{\alpha_{l-1}}[\hat{\nu}])U(\hat{\Pi}_{\alpha_{l-2}}[\hat{\nu}]) \cdots U(\hat{\Pi}_{\alpha_1}[\hat{\nu}]),
\]

in the case of \(E_{6}^{(2)} \) we define

\[
U = U(\hat{\Pi}_{\alpha_4}[\hat{\nu}])U(\hat{\Pi}_{\alpha_3}[\hat{\nu}])U(\hat{\Pi}_{\alpha_2}[\hat{\nu}])U(\hat{\Pi}_{\alpha_1}[\hat{\nu}]),
\]

and for \(D_{4}^{(3)} \) we define

\[
U = U(\hat{\Pi}_{\alpha_2}[\hat{\nu}])U(\hat{\Pi}_{\alpha_1}[\hat{\nu}]).
\]

The next lemma can be proved by using properties stated above and by arguing as in Lemma 3.1 of \(\text{[G]} \).

Lemma 3.1. In all of the above cases, we have that

\[
W_{L_k}^T = U \cdot v_L.
\]

3.2. Twisted quasi-particles.

For each simple root \(\alpha_i, r \in \mathbb{N} \), and \(m \in \frac{1}{v} \mathbb{Z} \) define the twisted quasi-particle of color \(i \), charge \(r \) and energy \(-m \) by

\[
x_{r\alpha_i}(m) = \text{Res}_{z} \left\{ z^{m+r-1} x_{r\alpha_i}(z) \right\},
\]

where

\[
x_{r\alpha_i}(z) = \sum_{m \in \frac{1}{v} \mathbb{Z}} x_{r\alpha_i}(m) z^{-m-r}
\]

is the twisted vertex operator

\[
x_{r\alpha_i}(z) = Y_{r\alpha_i} (x_{r\alpha_i}(-1)^r 1, z).
\]

As in the untwisted case (see \(\text{[G]}, \text{[Bu1]}-\text{[Bu3]} \)), we build twisted quasi-particle monomials from twisted quasi-particles. We say that the monomial

\[
b = b(\alpha_l) \cdots b(\alpha_1) =
\]

\[
x_{r_1(1),i_1,1}^{(1)}(m_{r_1(1),i_1,1}) \cdots x_{r_l(1),i_l,1}^{(1)}(m_{r_l(1),i_l,1}) \cdots x_{n_1,1,1}^{(1)}(m_{n_1,1,1}),
\]

is of charge-type

\[
R' = \left(n_{r_1(1),i_1}^{(1)}, \ldots, n_{1,i}^{(1)}; \ldots; n_{r_l(1),i_l}^{(1)}, \ldots, n_{1,i}^{(1)} \right),
\]

where \(0 \leq n_{r_i(1),i} \leq \ldots \leq n_{1,i} \), dual-charge-type

\[
R = \left(r_{1}^{(1)}, \ldots, r_{1}^{(s_1)}; \ldots; r_{1}^{(1)}, \ldots, r_{1}^{(s_1)} \right),
\]
where $r_i^{(1)} \geq r_i^{(2)} \geq \ldots \geq r_i^{(s_i)} \geq 0$, and color-type

$$(r_1, \ldots, r_1),$$

where

$$r_i = \sum_{p=1}^{r_i^{(1)}} n_{p,i} = \sum_{t=1}^{r_i^{(s_i)}} r_i^{(t)}$$

and $s_i \in \mathbb{N}$,

if for every color i, $1 \leq i \leq l$, $(n_{r_i^{(1)},i}, \ldots, n_{1,i})$ and $(r_i^{(1)}, r_i^{(2)}, \ldots, r_i^{(s_i)})$ are mutually conjugate partitions of r_i (cf. [Bu1]–[Bu3], [G]).

For two monomials b and \tilde{b} with charge-types R' and $\overline{R}' = \left(\overline{\pi}_{r_i^{(1)},i}^{(1)}, \ldots, \pi_{1,1}^{(1)}\right)$ and with energies $(m_{r_i^{(1)},i}, \ldots, m_{1,1})$ and $(\overline{m}_{r_i^{(1)},i}, \ldots, \overline{m}_{1,1})$ (which we write so that energies of twisted quasi-particles of the same color and the same charge form an increasing sequence of integers from right to the left), respectively, we write $b < \tilde{b}$ if one of the following conditions holds:

1. $R' < \overline{R}'$
2. $R' = \overline{R}'$ and $(m_{r_i^{(1)},i}, \ldots, m_{1,1}) < (\overline{m}_{r_i^{(1)},i}, \ldots, \overline{m}_{1,1})$,

where we write $R' < \overline{R}'$ if there exists $u \in \mathbb{N}$ such that $n_{1,i} = \pi_{1,i}, n_{2,i} = \pi_{2,i}, \ldots, n_{u-1,i} = \pi_{u-1,i},$ and either $u = r_i^{(1)} + 1$ or $n_{u,i} < \pi_{u,i}$, starting from color $i = 1$. In the case that $R' = \overline{R}'$, we apply this definition to the energies to similarly define $(m_{r_i^{(1)},i}, \ldots, m_{1,1}) < (\overline{m}_{r_i^{(1)},i}, \ldots, \overline{m}_{1,1})$.

4. Combinatorial bases

In this section we prove relations among twisted quasi-particles which we will use in the construction of our combinatorial bases for $W_{L_k}^T$.

4.1. Relations among twisted quasi-particles. For every color i we have the following relations:

$$x_{(k+1)\alpha_i}^\lambda(z) = 0$$

and

$$x_{r\alpha_i}(z) v_L \in W_{L_k}^T \llbracket z \rrbracket$$

when $\tilde{\nu}\alpha_i = \alpha_i,$

$$x_{r\alpha_i}(z) v_L \in z^{-\frac{1}{2}}W_{L_k}^T \llbracket z^{\frac{1}{2}} \rrbracket$$

when $\tilde{\nu}\alpha_i \neq \alpha_i$ and $v = 2,$ and

$$x_{r\alpha_i}(z) v_L \in z^{-\frac{2}{3}}W_{L_k}^T \llbracket z^{\frac{1}{3}} \rrbracket$$

when $\tilde{\nu}\alpha_i \neq \alpha_i$ and $v = 3,$ which all follow immediately from the fact that

$$x_{r\alpha_i}(m) v_L = 0$$

whenever $m \geq 0$. We will use also the following relations among quasi-particles of the same color:
Lemma 4.1. Let $1 \leq n \leq n'$ be fixed.

a) If $\hat{\nu}_\alpha = \alpha_i$ and $M, j \in \mathbb{Z}$ are fixed, the $2n$ monomials from the set

$$A = \{x^\nu_{n\alpha_i}(j)x^\nu_{n'\alpha_i}(M-j), x^\nu_{n\alpha_i}(j-1)x^\nu_{n'\alpha_i}(M-j+1), \ldots$$

$$\ldots, x^\nu_{n\alpha_i}(j-2n+1)x^\nu_{n'\alpha_i}(M-j+2n-1)\}$$

can be expressed as a linear combination of monomials from the set

$$\left\{x^\nu_{n\alpha_i}(m)x^\nu_{n'\alpha_i}(m') : m + m' = M \right\} \setminus A$$

and monomials which have as a factor the quasi-particle $x^\nu_{(n'+1)\alpha_i}(j')$, $j' \in \mathbb{Z}$.

b) If $\hat{\nu}_\alpha \neq \alpha_i$ and $M, j \in \frac{1}{\nu}\mathbb{Z}$ are fixed, the $2n$ monomials from the set

$$B = \{x^\nu_{n\alpha_i}(j)x^\nu_{n'\alpha_i}(M-j), x^\nu_{n\alpha_i}(j-\frac{1}{\nu})x^\nu_{n'\alpha_i}(M-j+\frac{1}{\nu}), \ldots$$

$$\ldots, x^\nu_{n\alpha_i}(j-\frac{2n-1}{\nu})x^\nu_{n'\alpha_i}(M-j+\frac{2n-1}{\nu})\}$$

can be expressed as a linear combination of monomials from the set

$$\left\{x^\nu_{n\alpha_i}(m)x^\nu_{n'\alpha_i}(m') : m + m' = M \right\} \setminus B$$

and monomials which have as a factor the quasi-particle $x^\nu_{(n'+1)\alpha_i}(j')$, $j' \in \frac{1}{\nu}\mathbb{Z}$.

Proof. The proof of part a) is identical to the proof of Lemma 4.4 in [JP]. Part b) can be proven analogously. First, for fixed $M \in \frac{1}{\nu}\mathbb{Z}$ in the coefficient of $z^{-M-n-n'-N}$ of the formal series

$$\frac{1}{N!} \left(\frac{d^N}{dz^N} x^\nu_{n\alpha_i}(z) \right) x^\nu_{n'\alpha_i}(z) = \tag{4.5}$$

$$= \sum_{M \in \frac{1}{\nu}\mathbb{Z}} \left(\sum_{m,m' = M} (-m-n) x^\nu_{n\alpha_i}(m) x^\nu_{n'\alpha_i}(m') \right) z^{-M-n-n'-N}$$

we separate the $2n$ monomials with $m = \frac{j}{\nu}, \frac{j-1}{\nu}, \ldots, \frac{j-2n-1}{\nu}$ for some fixed $j \in \mathbb{Z}$

$$\left(\frac{-\frac{j}{\nu} - n}{N} \right) x^\nu_{n\alpha_i} \left(\frac{j}{\nu} \right) x^\nu_{n'\alpha_i} \left(M - \frac{j}{\nu} \right) +$$

$$+ \left(\frac{-\frac{j}{\nu} - n + \frac{1}{\nu}}{N} \right) x^\nu_{n\alpha_i} \left(\frac{j}{\nu} - \frac{1}{\nu} \right) x^\nu_{n'\alpha_i} \left(M - \frac{j}{\nu} + \frac{1}{\nu} \right) +$$

$$+ \cdots + \left(\frac{-\frac{j}{\nu} - n + \frac{2n-2}{\nu}}{N} \right) x^\nu_{n\alpha_i} \left(\frac{j}{\nu} - \frac{2n-2}{\nu} \right) x^\nu_{n'\alpha_i} \left(M - \frac{j}{\nu} + \frac{2n-2}{\nu} \right) +$$

$$+ \left(\frac{-\frac{j}{\nu} - n + \frac{2n-1}{\nu}}{N} \right) x^\nu_{n\alpha_i} \left(\frac{j}{\nu} - \frac{2n-1}{\nu} \right) x^\nu_{n'\alpha_i} \left(M - \frac{j}{\nu} + \frac{2n-1}{\nu} \right) +$$
we can write the coefficient matrix as a product of two invertible matrices

\[\frac{1}{N!} \left(\frac{d^N}{dz^N} x_{n\alpha_1}^{\nu}(z) \right) x_{n'\alpha_1}^{\nu}(z) = A_1^{\nu}(z) x_{(n'+1)\alpha_1}^{\nu}(z) + A_2^{\nu}(z) \frac{d}{dz} x_{(n'+1)\alpha_1}^{\nu}(z), \]

where \(A_1^{\nu}(z) \) and \(A_2^{\nu}(z) \) are formal Laurent series whose coefficients are polynomials in \(x_{\alpha_1}^{\nu}(m) \), \(m \in \frac{1}{v} \mathbb{Z} \) (the proof of which is the same as the proof of Lemma 4.2 in [JP]).

Next, note that for \(N = 0, 1, \ldots, 2n - 1 \), we also have

\[\sum_{m, m' \in \frac{1}{v} \mathbb{Z}} \binom{-m - n}{N} x_{n\alpha_1}^{\nu}(m) x_{n'\alpha_1}^{\nu}(m'). \]

\[x_{n\alpha_1}^{\nu}(-p - n) x_{n'\alpha_1}^{\nu}(M + p + n), x_{n\alpha_1}^{\nu}(-p - n - \frac{1}{v}) x_{n'\alpha_1}^{\nu}(M + p + n + \frac{1}{v}), \ldots \]

\[\ldots, x_{n\alpha_1}^{\nu}(-p - n - \frac{2n - 1}{v}) x_{n'\alpha_1}^{\nu}(M + p + n + \frac{2n - 1}{v}), \]

where \(p = -\frac{1}{v} - n \), and whose right-hand side is equal to expressions in terms of higher quasi-particle monomials (with respect to ordering defined in previous section) and other quasi-particle monomials from the set \(\{ x_{n\alpha_1}^{\nu}(m) x_{n'\alpha_1}^{\nu}(m') : m + m' = M \} \setminus B \). Such an expression exists and is unique if the coefficient matrix

\[
\begin{pmatrix}
\binom{p}{0} & \binom{p+1/2}{0} & \cdots & \binom{p+2n-2}{0} & \binom{p+2n-1}{0} \\
\binom{p}{1/2} & \binom{p+1/2}{1/2} & \cdots & \binom{p+2n-2}{1/2} & \binom{p+2n-1}{1/2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\binom{p}{2n-1} & \binom{p+1/2}{2n-1} & \cdots & \binom{p+2n-2}{2n-1} & \binom{p+2n-1}{2n-1}
\end{pmatrix}
\]

is invertible.

By using the Chu-Vandermonde identity

\[
\sum_{q=0}^{N} \binom{a}{q} \binom{b}{N-q} = \binom{a+b}{N},
\]

we can write the coefficient matrix as a product of two invertible matrices

\[
\begin{pmatrix}
\binom{p}{0} & 0 & \cdots & 0 & 0 \\
\binom{p}{1} & \binom{p}{0} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\binom{p}{2n-1} & \binom{p}{2n-2} & \cdots & \binom{p}{1} & \binom{p}{0}
\end{pmatrix}
\begin{pmatrix}
\binom{0}{0} & \binom{1}{0} & \cdots & \binom{2n-2}{0} & \binom{2n-1}{0} \\
\binom{0}{1} & \binom{1}{1} & \cdots & \binom{2n-2}{1} & \binom{2n-1}{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\binom{0}{2n-1} & \binom{1}{2n-1} & \cdots & \binom{2n-2}{2n-1} & \binom{2n-1}{2n-1}
\end{pmatrix}
\]
To see that the second matrix in the product is invertible, we first, starting from row $2n - 1$, multiply row q of the determinant of the matrix by \(\frac{(q-1)^{n-1}}{q^v}\), where $2 \leq q \leq 2n - 1$, and then add to row $q + 1$, which will give us

\[
\begin{pmatrix}
1 & 1 & \ldots & 1 & 1 \\
0 & \frac{1}{v} & \frac{2}{v^2} & \ldots & \frac{2n-2}{v^{n-2}} & \frac{2n-1}{v^{n-1}} \\
0 & 0 & \frac{1}{v} & \ldots & \frac{1}{v^{n-1}}(\frac{2}{v}) & \frac{1}{v^n}(\frac{2n-1}{v}) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \frac{1}{v} & \ldots & \frac{1}{v^{n-1}}(\frac{2}{v}) & \frac{1}{v^n}(\frac{2n-1}{v})
\end{pmatrix}.
\]

We proceed with this process of reducing the determinant of our matrix to the determinant of an upper triangular matrix and assume that after $r - 1$ steps we have

\[
\begin{pmatrix}
1 & 1 & \ldots & 1 & 1 \\
0 & \frac{1}{v} & \frac{r}{v} & \ldots & \frac{2n-1}{v} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \frac{1}{v} & \ldots & \frac{1}{v^{n-1}}(\frac{r}{v}) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \frac{1}{v} & \ldots & \frac{1}{v^{n-1}}(\frac{r}{v})
\end{pmatrix}.
\]

Now, starting from row $2n - 1$, we multiply row q by \(\frac{(q-r)^{n-1}}{q^v}\), where $r + 1 \leq q \leq 2n - 1$, and add to row $q + 1$ and obtain

\[
\begin{pmatrix}
1 & 1 & \ldots & 1 & 1 \\
0 & \frac{1}{v} & \frac{r}{v} & \ldots & \frac{2n-1}{v} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \frac{1}{v} & \ldots & \frac{r+1}{v} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \frac{1}{v} & \ldots & \frac{r+1}{v}
\end{pmatrix}.
\]

After $2n - 1$ steps we get the determinant

\[
\begin{pmatrix}
1 & 1 & \ldots & 1 \\
0 & \frac{1}{v} & \frac{2}{v^2} & \ldots & \frac{2n-1}{v^{n-1}} \\
0 & 0 & \frac{1}{v} & \ldots & \frac{1}{v^{n-1}}(\frac{2n-1}{v}) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \frac{1}{v^{2n-1}}
\end{pmatrix} = v^{-n(2n-1)},
\]

from which our claim follows. \(\square\)
Remark 4.1. We note here that a more general form of this matrix appeared in [PSW], where it was called a “generalized Pascal matrix”. In [PSW], this matrix was shown to be invertible but its determinant was not explicitly computed.

From Lemma 4.1 it follows that if \(\hat{\nu} \alpha_i = \alpha_i \), then the \(2n \) monomial vectors
\[
x_{\nu \alpha_i}(m)x_{\nu' \alpha_i}(m') v_L, x_{\nu \alpha_i}(m-1)x_{\nu' \alpha_i}(m'+1)v_L, \ldots
\]
\[
\ldots, x_{\nu \alpha_i}(m-2n+2)x_{\nu' \alpha_i}(m'+2n-2)v_L, x_{\nu \alpha_i}(m-2n+1)x_{\nu' \alpha_i}(m'+2n-1)v_L
\]
such that \(n < n' \) can be expressed as a (finite) linear combination of the monomial vectors
\[
x_{\nu \alpha_i}(j)x_{\nu' \alpha_i}(j') v_L \quad \text{such that} \quad j \leq m - 2n, \quad j' \geq m' + 2n
\]
and monomial vectors with a factor quasi-particle \(x^\nu_{(n+1)\alpha_i}(j_1), j_1 \in \mathbb{Z} \). If \(n = n' \), then the monomial vectors
\[
x_{\nu \alpha_i}(m)x_{\nu' \alpha_i}(m') v_L \quad \text{such that} \quad m' - 2n \leq m \leq m'
\]
can be expressed as a linear combination of monomial vectors
\[
x_{\nu \alpha_i}(j)x_{\nu' \alpha_i}(j') v_L, \quad \text{such that} \quad j \leq j' - 2n
\]
and monomial vectors with a factor quasi-particle \(x^\nu_{(n+1)\alpha_i}(j_1), j_1 \in \mathbb{Z} \).

If \(\hat{\nu} \alpha_i \neq \alpha_i \), then the \(2n \) monomial vectors
\[
x_{\nu \alpha_i}(m)x_{\nu' \alpha_i}(m') v_L, x_{\nu \alpha_i}(m-1)x_{\nu' \alpha_i}(m'+1)v_L, \ldots
\]
\[
\ldots, x_{\nu \alpha_i}(m-2n+2)x_{\nu' \alpha_i}(m'+2n-2)v_L, x_{\nu \alpha_i}(m-2n+1)x_{\nu' \alpha_i}(m'+2n-1)v_L
\]
with \(n < n' \) can be expressed as a (finite) linear combination of the monomial vectors
\[
x_{\nu \alpha_i}(j)x_{\nu' \alpha_i}(j') v_L, \quad \text{such that} \quad j \leq m - \frac{2n}{v}, \quad j' \geq m' + \frac{2n}{v}
\]
and monomial vectors with a factor quasi-particle \(x^\nu_{(n+1)\alpha_i}(j_1), j_1 \in \frac{1}{v} \mathbb{Z} \). If \(n = n' \), then the monomial vectors
\[
x_{\nu \alpha_i}(m)x_{\nu' \alpha_i}(m') v_L, \quad \text{such that} \quad m' - \frac{2n}{v} \leq m \leq m'
\]
can be expressed as a linear combination of the monomial vectors
\[
x_{\nu \alpha_i}(j)x_{\nu' \alpha_i}(j') v_L, \quad \text{such that} \quad j \leq j' - \frac{2n}{v}
\]
and monomial vectors with a factor quasi-particle \(x^\nu_{(n+1)\alpha_i}(j_1), j_1 \in \frac{1}{v} \mathbb{Z} \).

The following lemma describes relations among quasi-particles with different colors:

Lemma 4.2. Let \(1 \leq n, n' \leq k \) be fixed. Then:

a) if \(v = 2 \) and \(\langle \alpha, \beta \rangle = -1 = \langle \nu \alpha, \beta \rangle \), we have:
\[
(z_1 - z_2)^{\min\{n,n'\}} x_{\nu \alpha}(z_1)x_{\nu' \beta}(z_2) = (z_1 - z_2)^{\min\{n,n'\}} x_{\nu' \beta}(z_2)x_{\nu \alpha}(z_1), \tag{4.7}
\]
b) if $v = 2$ and $\langle \alpha, \beta \rangle = -1$, $\langle \nu \alpha, \beta \rangle = 0$, we have:

\[
(\frac{1}{z_1^2} - \frac{1}{z_2^2}) x^\nu_{\alpha\beta}(z_1) x^\nu_{\alpha\beta}(z_2) = (\frac{1}{z_1^2} - \frac{1}{z_2^2}) x^\nu_{\alpha\beta}(z_2) x^\nu_{\alpha\beta}(z_1),
\]

(4.8)

c) if $v = 3$ for $\alpha = \alpha_1$, $\beta = \alpha_2$, we have:

\[
(\frac{1}{z_1} - \frac{1}{z_2}) x^\nu_{\alpha\beta}(z_1) x^\nu_{\alpha\beta}(z_2) = (\frac{1}{z_1} - \frac{1}{z_2}) x^\nu_{\alpha\beta}(z_2) x^\nu_{\alpha\beta}(z_1).
\]

(4.9)

Proof. The proof follows from the commutator formula for twisted vertex operators (2.5) and from properties of the δ-function.

By using relations (4.1)–(4.4) among twisted quasi-particles, Lemma 4.1 and relations (4.2)–(4.9), we define the following sets:

- for $A_{2l-1}^{(2)}$:

\[
B = \bigcup_{n_{r^{(1)}_i}, \ldots \leq n_{1,1} \leq k} \bigcup_{n_{r^{(1)}_i}, \ldots \leq n_{1,1} \leq k} \{ b = b(\alpha_1) \cdots b(\alpha_l) = x_{r^{(1)}_{1,1}}^{\nu_{\alpha_1}}(m_{r^{(1)}_1}) \cdots x_{r^{(1)}_{1,1}}^{\nu_{\alpha_1}}(m_{1,1}) \}
\]

\[
\begin{align*}
&\quad m_{p,i} \in \frac{1}{2} \mathbb{Z}, \quad 1 \leq p \leq r^{(1)}_i, \ 1 \leq i \leq l - 1; \\
&\quad m_{p,i} \leq -\frac{n_{p,i}}{2} + \frac{1}{2} \sum_{q=1}^{r^{(1)}_i} \min \{ n_{q,i-1}, n_{p,i} \} - \sum_{p>p'} 0 \min \{ n_{p,i}, n_{p',i} \}, \\
&\quad 1 \leq p \leq r^{(1)}_i, \ 1 \leq i \leq l - 1; \\
&\quad m_{p+1,i} \leq m_{p,i} - n_{p,i} \text{ if } n_{p+1,i} = n_{p,i}, \ 1 \leq p \leq r^{(1)}_i - 1, \ 1 \leq i \leq l - 1; \\
&\quad m_{p,l} \in \mathbb{Z}, \ 1 \leq p \leq r^{(1)}_l; \\
&\quad m_{p,l} \leq -n_{p,l} + \sum_{q=1}^{r^{(1)}_l} \min \{ n_{q,l-1}, n_{p,l} \} - \sum_{p>p'} 2 \min \{ n_{p,l}, n_{p',l} \}, \\
&\quad 1 \leq p \leq r^{(1)}_l; \\
&\quad m_{p+1,l} \leq m_{p,l} - 2n_{p,l} \text{ if } n_{p,l} = n_{p+1,l}, \ 1 \leq p \leq r^{(1)}_l - 1
\end{align*}
\]

- for $D^{(2)}_l$:

\[
B = \bigcup_{n_{r^{(1)}_i}, \ldots \leq n_{1,1} \leq k} \bigcup_{n_{r^{(1)}_i}, \ldots \leq n_{1,1} \leq k} \{ b = b(\alpha_{l-1}) \cdots b(\alpha_1) = x_{r^{(1)}_{1,1}}^{\nu_{\alpha_1-1}}(m_{r^{(1)}_1}) \cdots x_{r^{(1)}_{1,1}}^{\nu_{\alpha_1-1}}(m_{1,1}) \}.
\]
\[\cdots x_{n_1^{(1)},1}^{p} \cdots x_{n_1^{(1)},1}^{p} \cdots x_{n_1,1}^{\alpha_1} (m_1,1) : \]

\[
m_{p,i} \in \mathbb{Z}, \quad 1 \leq p \leq r_i^{(1)}, \quad 1 \leq i \leq l - 2; \]
\[
m_{p,i} \leq -n_{p,i} + \sum_{q=1}^{r_i^{(1)}} \min \{n_{q,i-1}, n_{p,i}\} - \sum_{p>p'>0} 2 \min \{n_{p,i}, n_{p',i}\}, \quad 1 \leq p \leq r_i^{(1)}, \quad 1 \leq i \leq l - 2; \]
\[
m_{p+1,i} \leq m_{p,i} - 2n_{p,i} \quad \text{if} \quad n_{p+1,i} = n_{p,i}, \quad 1 \leq p \leq r_i^{(1)} - 1, \quad 1 \leq i \leq 2; \]
\[
m_{p,l-1} \in \frac{1}{2} \mathbb{Z}, \quad 1 \leq p \leq r_{l-1}^{(1)}; \]
\[
m_{p,l-1} \leq -\frac{n_{p,l-1}}{2} + \sum_{q=1}^{r_{l-1}^{(1)}} \min \{n_{q,l-2}, n_{p,l-1}\} - \sum_{p>p'>0} \min \{n_{p,l-1}, n_{p',l-1}\}, \quad 1 \leq p \leq r_{l-1}^{(1)}; \]
\[
m_{p+1,l-1} \leq m_{p,l-1} - n_{p,l-1} \quad \text{if} \quad n_{p,l-1} = n_{p+1,l-1}, \quad 1 \leq p \leq r_{l-1}^{(1)} - 1 \]

- for \(E_6^{(2)} \):

\[
B = \bigcup \left\{ \begin{array}{l}
\{ b = b(\alpha_4) \cdots b(\alpha_1) = \}
\end{array} \right.
\[
= x_{n_1^{(1)},1}^{p} a_4 (m_4^{(1)},1) \cdots x_{n_1,1}^{\alpha_4} (m_{1,4}) \cdots x_{n_1^{(1)},1}^{p} a_1 (m_1^{(1)},1) \cdots x_{n_1,1}^{\alpha_1} (m_{1,1}) : \]

\[
m_{p,i} \in \frac{1}{2} \mathbb{Z}, \quad 1 \leq p \leq r_i^{(1)}, \quad 1 \leq i \leq 2; \]
\[
m_{p,i} \leq -\frac{n_{p,i}}{2} + \frac{1}{2} \sum_{q=1}^{r_i^{(1)}} \min \{n_{q,i-1}, n_{p,i}\} - \sum_{p>p'>0} \min \{n_{p,i}, n_{p',i}\}, \quad 1 \leq p \leq r_i^{(1)}, \quad 1 \leq i \leq l - 1; \]
\[
m_{p+1,i} \leq m_{p,i} - n_{p,i} \quad \text{if} \quad n_{p+1,i} = n_{p,i}, \quad 1 \leq p \leq r_i^{(1)} - 1, \quad 1 \leq i \leq 2; \]
\[
m_{p,i} \in \mathbb{Z}, \quad 1 \leq p \leq r_{i}^{(1)}, \quad 3 \leq i \leq 4; \]
\[
m_{p,i} \leq -n_{p,i} + \sum_{q=1}^{r_i^{(1)}} \min \{n_{q,i-1}, n_{p,i}\} - \sum_{p>p'>0} 2 \min \{n_{p,i}, n_{p',i}\}, \quad 1 \leq p \leq r_i^{(1)}, \quad 3 \leq i \leq 4; \]
\[
m_{p+1,i} \leq m_{p,i} - 2n_{p,i} \quad \text{if} \quad n_{p,i} = n_{p+1,i}, \quad 1 \leq p \leq r_i^{(1)} - 1, \quad 3 \leq i \leq 4 \]

- for \(D_4^{(3)} \):

\[
B = \bigcup \left\{ \begin{array}{l}
\{ b = b(\alpha_2)b(\alpha_1) = \}
\end{array} \right.
\]
realize a linear order on the twisted quasi-particle monomials.

5. Proof of linear independence

To prove that the set \(B \) is a linearly independent set, we will use certain maps defined on our principal subspace. The first of these maps is a generalization of the projection map found in [G] to our twisted setting, and the remaining maps were used in [PS1] and [PS2], (see also [L1] and [CalLM4]).

The proof of the linear independence of \(\text{Proposition 4.1.} \) The set

\[B = \{bv_L : b \in B \} \quad (4.10) \]

spans the principal subspace \(W_{L_k}^T \).

Now, using the same proof as in [G], we have:

\[m_{p,1} \in \frac{1}{3} \mathbb{Z}, \quad 1 \leq p \leq r_1^{(1)}; \]
\[m_{p,1} \leq -\frac{n_{p,1}}{3} - \frac{2}{3} \sum_{p' > 0} \min\{n_{p,1}, n_{p',1}\}, 1 \leq p \leq r_1^{(1)}; \]
\[m_{p+1,1} \leq m_{p,1} - \frac{2}{3} n_{p,1} \text{ if } n_{p+1,1} = n_{p,1}, \quad 1 \leq p \leq r_1^{(1)} - 1; \]
\[m_{p,2} \in \mathbb{Z}, \quad 1 \leq p \leq r_2^{(1)}; \]
\[m_{p,2} \leq -n_{p,2} + \sum_{q=1}^{r_1^{(1)}} \min\{n_{q,1}, n_{p,2}\} - \sum_{p' > 0} 2 \min\{n_{p,2}, n_{p',2}\}, \quad 1 \leq p \leq r_2^{(1)}; \]
\[m_{p+1,2} \leq m_{p,2} - 2n_{p,2} \text{ if } n_{p,2} = n_{p+1,2}, \quad 1 \leq p \leq r_2^{(1)} - 1 \]

where \(r_0^{(1)} := 0 \).

Now, using the same proof as in [G], we have:

\[m_{p,1} \in \frac{1}{3} \mathbb{Z}, \quad 1 \leq p \leq r_1^{(1)}; \]
\[m_{p,1} \leq -\frac{n_{p,1}}{3} - \frac{2}{3} \sum_{p' > 0} \min\{n_{p,1}, n_{p',1}\}, 1 \leq p \leq r_1^{(1)}; \]
\[m_{p+1,1} \leq m_{p,1} - \frac{2}{3} n_{p,1} \text{ if } n_{p+1,1} = n_{p,1}, \quad 1 \leq p \leq r_1^{(1)} - 1; \]
\[m_{p,2} \in \mathbb{Z}, \quad 1 \leq p \leq r_2^{(1)}; \]
\[m_{p,2} \leq -n_{p,2} + \sum_{q=1}^{r_1^{(1)}} \min\{n_{q,1}, n_{p,2}\} - \sum_{p' > 0} 2 \min\{n_{p,2}, n_{p',2}\}, \quad 1 \leq p \leq r_2^{(1)}; \]
\[m_{p+1,2} \leq m_{p,2} - 2n_{p,2} \text{ if } n_{p,2} = n_{p+1,2}, \quad 1 \leq p \leq r_2^{(1)} - 1 \]
Using the level 1 relation $x^\hat{\nu}_{\alpha}(z) = 0$, with the projection π_R for fixed $1 \leq p \leq r_i^{(1)}$, we “place” $n_{p,i}$ generating functions $x^\hat{\nu}_{\alpha}(z)$ on first $n_{p,i}$ tensor factors:

$$x^\hat{\nu}_{n_{p,i}\alpha}(z_{p,i}) 1_T \otimes x^\hat{\nu}_{n_{p,i}\alpha}(z_{p,i}) 1_T \otimes \cdots \otimes x^\hat{\nu}_{n_{p,i}\alpha}(z_{p,i}) 1_T \otimes x^\hat{\nu}_{n_{p,i}\alpha}(z_{p,i}) 1_T,$$

where

$$0 \leq n^{(t)}_{p,i} \leq 1, \quad n_{p,i} = \sum_{t=1}^{k} n^{(t)}_{p,i}, \quad 1 \leq t \leq k.$$

Now, it follows that the projection of generating function

$$x^\hat{\nu}_{n_{p,i}\alpha}(z_{p,i}) \cdots x^\hat{\nu}_{n_{p,i}\alpha}(z_{1,1}) v_L$$

(5.1)

of dual-charge-type \mathcal{R} and corresponding charge-type $\mathcal{R}' = (n_{r_i^{(1)},i}, \cdots, n_{1,1})$ is

$$\pi_R x^\hat{\nu}_{n_{r_i^{(1)},i}\alpha}(z_{r_i^{(1)},i}) \cdots x^\hat{\nu}_{n_{r_i^{(1)},i}\alpha}(z_{1,1}) v_L$$

$$C x^\hat{\nu}_{n_{r_i^{(1)},i}\alpha}(z_{r_i^{(1)},i}) \cdots x^\hat{\nu}_{n_{r_i^{(1)},i}\alpha}(z_{1,1}) \cdots x^\hat{\nu}_{n_{r_i^{(1)},i}\alpha}(z_{r_i^{(1)},1}) \cdots x^\hat{\nu}_{n_{1,1}\alpha}(z_{1,1}) 1_T$$

$$\otimes \cdots \otimes$$

$$\otimes x^\hat{\nu}_{n_{r_i^{(1)},i}\alpha}(z_{r_i^{(1)},1}) \cdots x^\hat{\nu}_{n_{r_i^{(1)},i}\alpha}(z_{1,1}) \cdots x^\hat{\nu}_{n_{r_i^{(1)},i}\alpha}(z_{r_i^{(1)},1}) \cdots x^\hat{\nu}_{n_{1,1}\alpha}(z_{1,1}) 1_T,$$

where $C \in \mathbb{C}^*$, and

$$0 \leq n^{(t)}_{p,i} \leq 1, 1 \leq t \leq k, n^{(1)}_{p,i} \geq n^{(2)}_{p,i} \geq \cdots \geq n^{(k-1)}_{p,i} \geq n^{(k)}_{p,i}, n_{p,i} = \sum_{t=1}^{k} n^{(t)}_{p,i},$$

for every every p, $1 \leq p \leq r_i^{(1)}$, $1 \leq i \leq l$.

Also, from above it follows that the projection of bv_L, where $b \in B$ is the monomial

$$x^\hat{\nu}_{n_{r_i^{(1)},i}\alpha}(m_{r_i^{(1)},i}) \cdots x^\hat{\nu}_{n_{1,1}\alpha}(m_{1,1})$$

(5.2)

of charge-type \mathcal{R}' and dual-charge-type \mathcal{R}, is a coefficient of the generating function (5.1), which we will denote with $\pi_R bv_L$.

5.2. The maps $\Delta^T(\lambda, -z)$. Following [CalLM4], [CalMPe], and [PS1]–[PS2] for $\gamma \in h(0)$ and a character of the root lattice $\theta : L \to \mathbb{C}$, define

$$\tau_{\gamma, \theta} : \mathfrak{N}[\hat{\nu}] \to \mathfrak{N}[\hat{\nu}]$$

$$x^\hat{\nu}_{\alpha}(m) \mapsto \theta(\alpha)x^\hat{\nu}_{\alpha}(m + \langle \alpha(0), \gamma \rangle).$$

We note here that in general, $\tau_{\gamma, \theta}$ is a linear map, and for suitably chosen characters θ, it becomes an automorphism of $\mathfrak{N}[\hat{\nu}]$, which we extend to an automorphism of $U(\mathfrak{N}[\hat{\nu}])$. In particular, we consider maps $\tau_{\gamma, \theta}$ where $\gamma =$
\(\gamma_i = (\lambda_i)_{(0)} = \frac{1}{2} (\lambda_i + \nu \lambda_i) \), and where the corresponding characters \(\theta = \theta_i \) are chosen as in [PS1]–[PS2] defined by

\[\theta_i(\alpha_j) = (-1)^{\langle \lambda(i), \alpha_j \rangle}, \]

where we choose our subscripts \(i \) as follows:

- for \(A_{2l-1} \), let \(i = 1, \ldots, l \)
- for \(D_l \) when \(v = 2 \), let \(i = 1, \ldots, l - 1 \)
- for \(D_4 \) when \(v = 3 \), let \(i = 1, 2 \)
- \(E_6 \), let \(i = 1, 2, 3, 4. \)

and define \(\lambda^{(i)} = v(\lambda_i)_{(0)} \) for \(v = 2, 3 \) (see [PS2] and [PSW] for a more general definition of this symbol).

We also consider the related map \(\Delta_c(\lambda, x) \) from [CalLM4], [CalMPe], and [PS1]–[PS2].

For \(\lambda \in \{ \lambda_i | 1 \leq i \leq l \} \), we define the map

\[\Delta^T(\lambda_i - z) = (-1)^{\nu \lambda_z^{(0)}} E^+(\lambda_i, z), \]

and its constant term \(\Delta^T_c(\lambda_i - z) \). From [PS1]–[PS2], we have

\[\Delta^T_c(\lambda_i - z)(x^\beta(1) \cdot 1_T) = \tau_{\gamma_i, \theta_i}(x^\beta(1)) \cdot 1_T. \quad (5.3) \]

More generally, we have linear maps

\[\Delta^T(\lambda_i - z) : W^T_L \to W^T_L, \]

\[a \cdot 1_T \mapsto \tau_{\gamma_i, \theta_i}(a) \cdot 1_T, \]

where \(a \in U(\mathfrak{\Pi}^{\nu}) \).

Fix \(s \leq k \) and consider the map

\[1 \otimes \cdots \otimes \Delta^T(\lambda_i - z) \otimes 1 \]

\[\otimes \] \(s \)-1 factors.

Let \(b \in B \) as in (5.2). It follows that

\((1 \otimes \cdots \otimes 1 \otimes \Delta^T_c(\lambda_i, -z) \otimes 1 \otimes \cdots \otimes 1) \pi_R b v_L \)

is the coefficient of

\((1 \otimes \cdots \otimes \Delta^T_c(\lambda_i, -z) \otimes 1 \otimes \cdots \otimes 1) \pi_R x^\beta_{n(1)}(z_{1(1)}, \ldots, x^\beta_{n(1)}(z_{1(1)}) \cdots x^\beta_{s(1)}(z_{1,1}), v_L, \)

where, from (5.3), it follows that operator \(\Delta^T(\lambda_i, -z) \) acts only on the \(s \)-th tensor row as:

\[\otimes x^\beta_{n(1)}(z_{1,1}) \cdots x^\beta_{n(1)}(z_{1,1}) \otimes x^\beta_{n(1)}(z_{1,1}) \cdots x^\beta_{n(1)}(z_{1,1}) \]

\[\cdots x^\beta_{n(1)}(z_{1,1}) \cdots x^\beta_{n(1)}(z_{1,1}) \]

for \(i \) such that \(\nu \alpha_i = \alpha_i \) and as

\[\otimes x^\beta_{n(1)}(z_{1,1}) \cdots x^\beta_{n(1)}(z_{1,1}) \otimes x^\beta_{n(1)}(z_{1,1}) \cdots x^\beta_{n(1)}(z_{1,1}) \cdots x^\beta_{n(1)}(z_{1,1}) \]

\[\cdots \]
\[
\cdots x_{n_{i,1}}^{\rho} x_{i,1}^{\frac{1}{2}} \cdots x_{n_{r_i}}^{\rho} x_{i,1}^{\frac{1}{2}} \cdots x_{n_{1,1}}^{\rho} (z_{1,1}) 1_T \otimes,
\]

if \(i \) is such that \(\nu \alpha_i \neq \alpha_i \), where \(0 \leq n_{p,i} \leq 1 \), for \(1 \leq p \leq r_i \). By taking the corresponding coefficients, we have

\[
(1 \otimes \cdots \otimes 1 \otimes \Delta_{c}^{\nu}(\lambda_i, -z) \otimes 1 \otimes \cdots \otimes 1) \pi_R b \nu L = \pi_R b^+ \nu L,
\]

where

\[
b^+ = b(\alpha_1) \cdots b(\alpha_{i+1}) b^+ (\alpha_i) b(\alpha_{i-1}) \cdots b(\alpha_1),
\]

with

\[
b^+ (\alpha_i) = x_{n_{(r_i)} }^{\bar{\rho}} x_{i}^{\alpha_i} (m_{(r_i),i} + 1) \cdots x_{n_{1,1},1}^{\rho}(m_{1,1} + 1)
\]

if \(\nu \alpha_i = \alpha_i \) and with

\[
b^+ (\alpha_i) = x_{n_{(r_i)} }^{\bar{\rho}} x_{i}^{\alpha_i} (m_{(r_i),i} + \frac{1}{v}) \cdots x_{n_{1,1},1}^{\rho}(m_{1,1} + \frac{1}{v})
\]

if \(\nu \alpha_i \neq \alpha_i \).

5.3. The maps \(e_{\alpha_i} \). Finally, we recall the maps \(e_{\alpha_i} \), which satisfy

\[
e_{\alpha_i} : V_L^T \rightarrow V_L^T
\]

and their restriction to the principal subspace \(W_L^T \subset V_L^T \) where

\[
e_{\alpha_i} \cdot 1_T = \frac{2}{\sigma(\alpha_i)} x_{\alpha_i}^{\rho} (-1) \cdot 1_T \text{ if } \nu \alpha_i = \alpha_i
\]

\[
e_{\alpha_i} \cdot 1_T = \frac{2}{\sigma(\alpha_i)} x_{\alpha_i}^{\rho} \left(-\frac{1}{2} \right) \cdot 1_T \text{ if } \nu \alpha_i \neq \alpha_i,
\]

when \(v = 2 \) and

\[
e_{\alpha_1} \cdot 1_T = \frac{3}{\sigma(\alpha_1)} x_{\alpha_1}^{\rho} \left(-\frac{1}{3} \right) \cdot 1_T
\]

\[
e_{\alpha_2} \cdot 1_T = \frac{3}{\sigma(\alpha_2)} x_{\alpha_2}^{\rho} (-1) \cdot 1_T
\]

if \(v = 3 \), and commute with our operators \(x_{\beta}^{\rho}(n) \) via

\[
e_{\alpha_i} x_{\beta}^{\rho}(n) = C(\alpha_i, \beta) x_{\beta}^{\rho}(n - \langle \beta(0), \alpha_i \rangle) \cdot e_{\alpha_i}.
\]

Now, assume that we have a monomial

\[
b = b(\alpha_1) \cdots b(\alpha_1) x_{s\alpha_1}^{\rho} \left(-\frac{s}{2} \right) \in B
\]

\[
b = x_{n_{(r_i)} }^{\bar{\rho}} x_{i}^{\alpha_i} (m_{(r_i),i} + \cdots x_{n_{(r_i)} }^{\bar{\rho}} x_{i}^{\alpha_i} (m_{(r_i),i} + \cdots x_{n_{1,1},1}^{\rho}(m_{1,1} + \frac{1}{v})
\]

of dual-charge-type

\[
R = \left(r_{1}^{(1)}, \ldots, r_{l}^{(k)}; \ldots, r_{1}^{(1)}, \ldots, r_{1}^{(s)}, 0, \ldots, 0 \right)
\]

and a projection \(\pi_R b \nu L \), which is a coefficient of

\[
\pi_R x_{n_{(r_i)} }^{\bar{\rho}} x_{i}^{\alpha_i} (z_{(r_i),i}) \cdots x_{n_{2,1},1}^{\rho}(z_{1,1}) 1_T \otimes \cdots
\]
\[
\cdots \otimes 1_T \otimes x^\psi (\frac{1}{2}) 1_T \otimes \cdots \otimes x^\psi (\frac{1}{2}) 1_T
\]

\[
= C x^\psi_{n^{(k)}_{r_1^{(k)}}, \alpha_1} (z_{r_1^{(k)}, l}) \cdots x^\psi_{n^{(k)}_{r_1^{(k)}}, 1} (z_{1, l}) \cdots x^\psi_{n^{(k)}_{r_1^{(k)}}, \alpha_1} (z_{r_1^{(k)}, 1}) \cdots x^\psi_{n^{(k)}_{r_2^{(k)}}, \alpha_1} (z_{1, 1}) 1_T
\]

\[
\cdots \otimes \cdots \otimes x^\psi_{n^{(s+1)}_{r_1^{(s+1)}}, \alpha_1} (z_{r_1^{(s+1)}, l}) \cdots x^\psi_{n^{(s+1)}_{r_1^{(s+1)}}, 1} (z_{1, l}) \cdots x^\psi_{n^{(s+1)}_{r_1^{(s+1)}}, \alpha_1} (z_{r_1^{(s+1)}, 1}) \cdots x^\psi_{n^{(s)}_{r_1^{(s)}}, \alpha_1} (z_{1, 1}) \cdots x^\psi_{n^{(s)}_{r_1^{(s)}}, \alpha_1} (z_{r_1^{(s)}, 1}) \cdots x^\psi_{n^{(s)}_{r_1^{(s)}}, \alpha_1} (z_{r_1^{(s)}, 1}) \cdots x^\psi_{n^{(s)}_{r_1^{(s)}}, \alpha_1} (z_{1, 1}) \cdots x^\psi_{n^{(s)}_{r_1^{(s)}}, \alpha_1} (z_{r_1^{(s)}, 1}) e_{\alpha_1} 1_T
\]

\[
\cdots \otimes \cdots \otimes x^\psi_{n^{(1)}_{r_1^{(1)}}, \alpha_1} (z_{r_1^{(1)}, l}) \cdots x^\psi_{n^{(1)}_{r_1^{(1)}}, 1} (z_{1, l}) \cdots x^\psi_{n^{(1)}_{r_1^{(1)}}, \alpha_1} (z_{r_1^{(1)}, 1}) \cdots x^\psi_{n^{(1)}_{r_1^{(1)}}, \alpha_1} (z_{r_1^{(1)}, 1}) \cdots x^\psi_{n^{(1)}_{r_1^{(1)}}, \alpha_1} (z_{1, 1}) \cdots x^\psi_{n^{(1)}_{r_1^{(1)}}, \alpha_1} (z_{r_1^{(1)}, 1}) \cdots x^\psi_{n^{(1)}_{r_1^{(1)}}, \alpha_1} (z_{r_1^{(1)}, 1}) e_{\alpha_1} 1_T,
\]

where \(C \in \mathbb{C}^* \).

If we move the operator \(1 \otimes \cdots \otimes 1 \otimes e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_1} \) all the way to the left we will get a projection \(\pi_{R^-} b' v_L \), where

\[
R^- = \left(r_1^{(1)}, \ldots, r_1^{(k)}; \ldots; r_1^{(1)}, \ldots, r_1^{(s)} - 1, 0, \ldots, 0 \right)
\]

and

\[
b' = b(\alpha_1) \cdots b(\alpha_2) b'(\alpha_1),
\]

with

\[
b'(\alpha_1) = x^\psi_{n^{(1)}_{r_1^{(1)}}, \alpha_1} (m_{r_1^{(1)}, 1} + n_{r_1^{(1)}, 1}) + \cdots + x^\psi_{n^{(s)}_{r_1^{(s)}}, \alpha_1} (m_{r_1^{(s)}, 1} + n_{r_1^{(s)}, 1})
\]

and

\[
b'(\alpha_2) = x^\psi_{n^{(1)}_{r_2^{(1)}}, \alpha_2} (m_{r_2^{(1)}, 2} - \frac{n_{r_2^{(1)}, 2}}{2} + \cdots + n_{r_2^{(1)}, 2})
\]

\[
\cdots x^\psi_{n^{(1)}_{r_1^{(1)}}, \alpha_1} (m_{r_1^{(1)}, 2} - \frac{n_{r_1^{(1)}, 2}}{2} + \cdots + n_{r_1^{(1)}, 2})
\]

Above we only considered the case when \(v = 2 \) and \(v\alpha_1 \neq \alpha_1 \), but note here that the remaining cases are similar.
5.4. A proof of linear independence. Here we will prove our main theorem:

Theorem 5.1. The set

\[\mathcal{B} = \{ bv_L : b \in B \} \]

is a basis of the principal subspace \(W^T_{L_1} \).

Proof. By Proposition 4.1, the set of monomial vectors \(\mathcal{B} \) spans \(W^T_{L_1} \), and so it remains to show that \(\mathcal{B} \) is linearly independent. To prove linear independence first assume that we have

\[bv_L = 0 \]

where

\[b = x^n_{r_1 (1), \alpha_1 (m_{r_1 (1), 1})} \cdots x^n_{n_1, \alpha_l (m_{1, l})} \cdots x^{\tilde{n}}_{n_1 (1), \alpha_1 (m_{1, 1})} \cdots x^{\tilde{n}}_{n_1, \alpha_1 (m_{1, 1})} \in B, \]

of charge-type

\[R' = \left(n_{r_1 (1), 1}, \ldots, n_{1, l} ; n_{r_1 (1), 1}, \ldots, n_{1, 1} \right) \]

and dual-charge-type

\[R = \left(r_1 (1), \ldots, r_{k (1)} ; r_1 (1), \ldots, r_{1 (1)} \right) \]

which determines the projection \(\pi_R \), so that we have

\[\pi_R bv_L = 0. \] (5.4)

We will assume that \(\nu \alpha_1 \neq \alpha_1 \) and we will let \(s = n_{1, 1} \). We apply \(1 \otimes \cdots \otimes \Delta^T_c (\lambda_1, -z)^d \otimes 1 \otimes \cdots \otimes 1 \) to (5.4), where

\[\Delta^T_c (\lambda_1, -z)^d = \underbrace{\Delta^T_c (\lambda_1, -z) \circ \cdots \circ \Delta^T_c (\lambda_1, -z)}_{d \text{ times}} \]

and where \(d \in \mathbb{N} \) is selected so that after application of this map the twisted quasi-particle of color 1 and charge \(s \) has energy \(-\frac{s}{\nu} \). From the considerations in Subsection 5.2, we have

\[\pi_R x^n_{r_1 (1), \alpha_1 (m_{r_1 (1), 1})} \cdots x^n_{n_1, \alpha_l (m_{1, l})} \cdots x^{\tilde{n}}_{n_1 (1), \alpha_1 (m_{1, 1})} \cdots x^{\tilde{n}}_{n_1, \alpha_1 (m_{1, 1})} \cdots \] (5.5)

\[\cdots x^n_{n_2, \alpha_1 (m'_{2, 1})} \left(1_T \otimes \cdots \otimes 1_T \otimes x^{\tilde{n}}_{\alpha_1 (1)} (-\frac{1}{\nu}) 1_T \otimes \cdots \otimes x^{\tilde{n}}_{\alpha_1 (1)} (-\frac{1}{\nu}) 1_T \right) = 0, \]

which is a projection of a monomial vector from \(\mathcal{B} \). From (5.5) it follows that

\[(1 \otimes \cdots \otimes 1 \otimes e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_1}) \pi_R x^{\tilde{n}}_{r_1 (1), \alpha_i (m_{r_1 (1), 1})} \cdots x^{\tilde{n}}_{n_1, \alpha_1 (m_{1, 1})} \cdots \]

\[\cdots x^{\tilde{n}}_{r_2 (1), \alpha_2 (m'_{r_2 (1), 2})} \cdots x^{\tilde{n}}_{n_2, \alpha_2 (m_{1, 2})} \]
\[x_{n,1}^{\phi} (m_{r,1}^{\phi}) \cdots x_{n,2,a_1}^{\phi} (m_{2,1}^{\phi}) v_L = 0, \]

where

\[R^{-} = \left(r^{(1)}_1, \ldots, r^{(k)}_1, \ldots; r^{(1)}_1, \ldots, r^{(s)}_1 - 1 \right). \]

By injectivity of \(1 \otimes \cdots \otimes 1 \otimes e_{a_1} \otimes \cdots \otimes e_{a_1} \), we have

\[\pi_{R^{-}} x_{n,1}^{\phi} (m_{r,1}^{\phi}) \cdots x_{n,2,a_1}^{\phi} (m_{2,1}^{\phi}) a_1 (m_{r,1}^{\phi}) \cdots x_{n,2,a_1}^{\phi} (m_{2,1}^{\phi}) v_L = 0. \]

If \(v = 2 \), for every \(2 \leq p \leq r^{(1)}_1 \) such that \(n_{p,1} = s' \leq s \) we have

\[m'_{p,1} = m_{p,1}^{+} + s' \leq -\frac{n_{p,1}}{2} - \sum_{p > p'} \min \{ n_{p,1}, n_{p',1} \} + s'; \]

\[m'_{p+1,1} = m_{p,1}^{+} + s' - n_{p,1} - n_{p'} - s' = m'_{p,1} - n_{p,1} \text{ if } n_{p+1,1} = n_{p,1}; \]

\[m'_{p,2} = m_{p,2}^{+} - \frac{s'}{2} \leq -\frac{n_{p,2}}{2} + \frac{1}{2} x^{(1)}_{r,1} \sum_{q=1} \min \{ n_{q,1}, n_{p,2} \} - \sum_{p > p'} \min \{ n_{p,1}, n_{p',1} \} - s' - \frac{s'}{2}; \]

\[m'_{p,2} = m_{p,2}^{+} - \frac{s'}{2} \leq m_{p,2}^{+} - n_{p,2} - s' = m'_{p,2} - n_{p,2} \text{ if } n_{p+1,2} = n_{p,2}. \]

If \(v = 3 \), for every \(2 \leq p \leq r^{(1)}_1 \) and for \(n_{p,1} = s' \leq s \) we have

\[m'_{p,1} = m_{p,1}^{+} + \frac{2s'}{3} \leq -\frac{n_{p,1}}{3} - \frac{2}{3} x^{(1)}_{r,1} \sum_{q=1} \min \{ n_{q,1}, n_{p,2} \} - \sum_{p > p'} 2 \min \{ n_{p,1}, n_{p',1} \} + \frac{2s'}{3}; \]

\[m'_{p+1,1} = m_{p,1}^{+} + \frac{2s'}{3} \leq m_{p,1}^{+} - \frac{2}{3} n_{p,1} + \frac{2s'}{3} = m'_{p,1} - \frac{2}{3} n_{p,1} \text{ if } n_{p+1,1} = n_{p,1}; \]

\[m'_{p,2} = m_{p,2}^{+} - s' \leq -n_{p,2} + \sum_{q=1} \min \{ n_{q,1}, n_{p,2} \} - \sum_{p > p'} 2 \min \{ n_{p,1}, n_{p',1} \} - s'; \]

\[m'_{p+1,2} = m_{p,2}^{+} - s' \leq m_{p,2}^{+} - n_{p,2} - s' = m'_{p,2} - n_{p,2} \text{ if } n_{p+1,2} = n_{p,2}. \]

This shows that in (5.6) we have the projection of a monomial vector from the set \(B \). In the case when \(\nu \alpha_1 = \alpha_1 \), with the above procedure will end with a monomial vector as in (5.6), which is also from the set \(B \), since for every \(2 \leq p \leq r^{(1)}_1 \) and for \(n_{p,1} = s' \leq s \), we have

\[m'_{p,1} = m_{p,1}^{+} + 2s' \leq -n_{p,1} - \sum_{p > p'} 2 \min \{ n_{p,1}, n_{p',1} \} + 2s'; \]

\[m'_{p+1,1} = m_{p,1}^{+} + 2s' \leq m_{p,1}^{+} - 2n_{p,1} + 2s' = m'_{p,1} - 2n_{p,1} \text{ if } n_{p+1,1} = n_{p,1}; \]

\[m'_{p,2} = m_{p,2}^{+} - s' \leq -n_{p,2} + \sum_{q=1} \min \{ n_{q,1}, n_{p,2} \} - \sum_{p > p'} 2 \min \{ n_{p,1}, n_{p',1} \} - s'; \]

\[m'_{p+1,2} = m_{p,2}^{+} - s' \leq m_{p,2}^{+} - 2n_{p,2} - s' = m'_{p,2} - 2n_{p,2} \text{ if } n_{p+1,2} = n_{p,2}. \]
If we continue in this way, “removing” one by one twisted quasi-particles from the monomial b and by checking in each step that monomial vectors are in the set \mathcal{B}, after finitely many steps we arrive at $v_L = 0$, which is a contradiction.

Now, consider a linear combination of elements from \mathcal{B} satisfying

$$\sum_{a \in A} c_a b_a v_L = 0,$$ \hspace{1cm} (5.7)

where $b_a \in B$ are monomials of the same color-type and $c_a \in \mathbb{C}$. We will assume that the monomial b of charge-type \mathcal{R}' and dual-charge-type \mathcal{R} is the smallest monomial in (5.7) with respect to our linear ordering. Recall that the dual-charge-type \mathcal{R} determines the projection $\pi_\mathcal{R}$ and note that from the definition of the projection it follows that all monomial vectors $b_a v_L$ in (5.7), with charge-type $\mathcal{R}' a$ such that $\mathcal{R}' a > \mathcal{R}'$ (see (3.2)), will be annihilated. So, after applying $\pi_\mathcal{R}$ to (5.7), we will have

$$\sum_{a \in A} c_a \pi_\mathcal{R} b_a v_L = 0,$$ \hspace{1cm} (5.8)

where all monomial vectors are of the same color-charge-type. Now we apply the above-described procedure of using the maps $1 \otimes \cdots \otimes \Delta_T c(\lambda_1, -z)^d \otimes 1 \otimes \cdots \otimes 1 \otimes e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_1}$ to the smallest element b. During this procedure, all monomial vectors b_a such that $b_a > b$ (see (3.2)) will be annihilated. From (5.8) now we have $\pi_\mathcal{R} c_a b v_L = 0$, which then implies $c_a = 0$. Repeating this procedure, after finitely many steps we will get that all coefficients c_a of (5.7) are zero, which proves the theorem. \hfill \Box

6. Characters of principal subspaces

We define character of principal subspace W^T_L by

$$\text{ch} W^T_L = \sum_{m, r_1, \ldots, r_l \geq 0} \dim W^T_{Lk(m, r_1, \ldots, r_l)} q^{\sum_{i=1}^l r_i} y_1^{r_1} \cdots y_l^{r_l},$$

where $W^T_{Lk(m, r_1, \ldots, r_l)}$ is a weight subspace spanned by monomial vectors of weight $-m$ and color-type (r_1, \ldots, r_l).

We write the characters of principal subspaces in terms of dual-charge-type parts $r_i^{(s)}$. Therefore, to obtain characters first we rewrite the conditions on the energies of twisted quasi-particles of a basis \mathcal{B} in terms of the dual-charge-type. In the case of $A^{(2)}_{2l-1}$ for fixed color type (r_1, \ldots, r_1), charge-type $\mathcal{R}' = (r_i^{(1)}, \ldots, r_i; \ldots; n_1, \ldots, n_1)$ and dual-charge-type $\mathcal{R} = (r_i^{(1)}, \ldots, r_i^{(k)}; \ldots; r_1^{(1)}, \ldots, r_1^{(k)})$ we have:

$$\sum_{p=1}^{r_i^{(1)}} \left(\sum_{p > p'} \min\{n_{p,i}, n_{p',i}\} + \frac{1}{2} n_{p,i} \right) = \frac{1}{2} \sum_{s=1}^k r_i^{(s)}^2, \quad 2 \leq i \leq l - 1, \quad (6.1)$$
where

\[\sum_{p=1}^{r_{l-1}^{(1)}} \sum_{p>p'>0} 2\min\{n_{p,l}, n_{p',l}\} + n_{p,l} = \sum_{s=1}^{k} r_{l}^{(s)}^2, \quad (6.2) \]

\[\sum_{p=1}^{r_{l-1}^{(1)}} \sum_{q=1}^{r_{l-1}^{(1)}} \frac{1}{2} \min\{n_{p,i}, n_{q,i-1}\} = \frac{1}{2} \sum_{s=1}^{k} r_{l-1}^{(s)} r_{l}^{(s)}, \quad 1 \leq i \leq l - 1, \quad (6.3) \]

and

\[\sum_{p=1}^{r_{l}^{(1)}} \sum_{q=1}^{r_{l}^{(1)}} \min\{n_{p,l}, n_{q,l-1}\} = \sum_{s=1}^{k} r_{l-1}^{(s)} r_{l}^{(s)}. \quad (6.4) \]

Expressions (6.1)–(6.4) are proved by using induction on the level \(k \in \mathbb{N} \) of the standard module. We would like to note that obtained expressions are similar to the expressions (5.9) and (5.12) in [G].

For \(r \in \mathbb{N} \) set \((q^\frac{1}{2}; q^\frac{1}{2})_r = (1 - q^\frac{1}{2}) \cdots (1 - q^\frac{1}{2})\), for \(a = 1, a = 2, \) or \(a = 3 \).

We have that

\[\frac{1}{(q^\frac{1}{2}; q^\frac{1}{2})_r} = \sum_{j \geq 0} p_r(j) q^{\frac{j}{2}}, \quad (6.5) \]

where \(p_r(j) \) denotes the number of partitions of \(j \) with most \(r \) parts (cf. [An]).

Now, from the definition of the set \(\mathcal{B} \) by using (6.1)–(6.6), for \(A_{2l-1}^{(2)} \) we have:

\[
\text{ch } W_{1 \cdots 1}^{T_k} = \sum_{r_1^{(1)} \geq \ldots \geq r_1^{(k)} \geq 0} q^{\frac{1}{2}} r_1^{(1)2} + \ldots + \frac{1}{2} r_1^{(k)2} y_1^{r_1^{(1)} + \ldots + r_1^{(k)}} \\
\cdot \sum_{r_2^{(1)} \geq \ldots \geq r_2^{(k)} \geq 0} y_2^{r_2^{(1)} + \ldots + r_2^{(k)}} \\
\cdot \ldots \\
\cdot \sum_{r_{l-1}^{(1)} \geq \ldots \geq r_{l-1}^{(k)} \geq 0} y_{l-1}^{r_{l-1}^{(1)} + \ldots + r_{l-1}^{(k)}} \\
\cdot \sum_{r_l^{(1)} \geq \ldots \geq r_l^{(k)} \geq 0} y_l^{r_l^{(1)} + \ldots + r_l^{(k)}}.
\]

We calculate characters similarly for the other cases, therefore we will give only expressions for energies of basis twisted quasi-particles which we used.
In the case of $D_l^{(2)}$ for fixed color type (r_{l-1}, \ldots, r_1), charge-type $\mathcal{R}' = (n_{r_{l-1}^{(1)}}, \ldots, n_{r_1, l-1}; \ldots; n_{r_1^{(1)}}, n_{n_1, 1})$ and dual-charge-type

$$\mathcal{R} = (r_{l-1}^{(1)}, \ldots, r_{l-1}^{(k)}; r_1^{(1)}, \ldots, r_1^{(k)})$$

we have:

$$\sum_{p=1}^{r_{l-1}^{(1)}} \left(\sum_{p > p'} 2 \min \{ n_{p, i}, n_{p', i} \} + n_{p, i} \right) = \sum_{s=1}^{k} r_i^{(s)^2}, \quad 1 \leq i \leq l - 2, \quad (6.6)$$

$$\sum_{p=1}^{r_{l-1}^{(1)}} \left(\sum_{p > p'} 2 \min \{ n_{p, l-1}, n_{p', l-1} \} + \frac{1}{2} n_{p, l-1} \right) = \frac{1}{2} \sum_{s=1}^{k} r_{l-1}^{(s)^2}, \quad (6.7)$$

$$\sum_{p=1}^{r_{l-1}^{(1)}} \sum_{q=1}^{r_{l-1}^{(1)}} \min \{ n_{p, i}, n_{q, i-1} \} = \sum_{s=1}^{k} r_{l-1}^{(s)} r_i^{(s)}, \quad 2 \leq i \leq l - 1. \quad (6.8)$$

In the case of $E_6^{(2)}$ for fixed color type (r_4, \ldots, r_1), charge-type $\mathcal{R}' = (n_{r_4^{(1)}}, \ldots, n_{r_4, 4}; \ldots; n_{r_1^{(1)}}, n_{n_1, 1})$ and dual-charge-type $\mathcal{R} = (r_4^{(1)}, \ldots, r_4^{(k)}; \ldots; r_1^{(1)}, \ldots, r_1^{(k)})$ we have:

$$\sum_{p=1}^{r_4^{(1)}} \left(\sum_{p > p'} \min \{ n_{p, i}, n_{p', i} \} + \frac{1}{2} n_{p, i} \right) = \frac{1}{2} \sum_{s=1}^{k} r_i^{(s)^2}, \quad 1 \leq i \leq 2, \quad (6.9)$$

$$\sum_{p=1}^{r_4^{(1)}} \left(\sum_{p > p'} 2 \min \{ n_{p, i}, n_{p', i} \} + n_{p, i} \right) = \sum_{s=1}^{k} r_i^{(s)^2}, \quad 3 \leq i \leq 4 \quad (6.10)$$

$$\sum_{p=1}^{r_{l-1}^{(1)}} \sum_{q=1}^{r_{l-1}^{(1)}} \frac{1}{2} \min \{ n_{p, i}, n_{q, i-1} \} = \frac{1}{2} \sum_{s=1}^{k} r_{l-1}^{(s)} r_i^{(s)}, \quad 1 \leq i \leq 2, \quad (6.11)$$

and

$$\sum_{p=1}^{r_{l-1}^{(1)}} \sum_{q=1}^{r_{l-1}^{(1)}} \min \{ n_{p, i}, n_{q, i-1} \} = \sum_{s=1}^{k} r_{l-1}^{(s)} r_i^{(s)}, \quad 3 \leq i \leq 4. \quad (6.12)$$

In the case of $D_4^{(3)}$ for fixed color type (r_2, r_1), charge-type $\mathcal{R}' = (n_{r_2^{(1)}}, \ldots, n_{r_2, 2}; n_{r_1^{(1)}}, \ldots, n_{n_1, 1})$ and dual-charge-type $\mathcal{R} = (r_2^{(1)}, \ldots, r_2^{(k)}; r_1^{(1)}, \ldots, r_1^{(k)})$ we have:

$$\sum_{p=1}^{r_2^{(1)}} \left(2 \sum_{p > p'} \min \{ n_{p, i}, n_{p', i} \} + \frac{1}{3} n_{p, i} \right) = \frac{1}{3} \sum_{s=1}^{k} r_i^{(s)^2}. \quad (6.13)$$
\[
\begin{align*}
\sum_{p=1}^{r_1^{(1)}} \left(\sum_{p' > p} 2\min\{n_{p,2}, n_{p',2}\} + n_{p,2} \right) &= \sum_{s=1}^{k} r_2^{(s)^2},
\quad (6.14) \\
\text{and} \\
\sum_{p=1}^{r_1^{(1)}} \sum_{q=1}^{r_1^{(1)}} \min\{n_{p,2}, n_{q,1}\} &= \sum_{s=1}^{k} r_1^{(s)} r_2^{(s)},
\quad (6.15)
\end{align*}
\]

From the above equations, we now have:

Theorem 6.1. For each of the affine Lie algebras \(A^{(2)}_{2l-1} \), \(D^{(2)}_l \), \(E^{(2)}_6 \), and \(D^{(3)}_4 \), the principal subspace \(W_L^T \) of \(L^\oplus(k\Lambda_0) \) has multigraded dimension given by:

- **for \(A^{(2)}_{2l-1} \):**
 \[
 \text{ch} \ W_L^T = \sum_{r_1^{(1)} \geq \cdots \geq r_1^{(k)} \geq 0} \frac{q^{\frac{1}{2} \sum_{i=1}^{l-2} \sum_{s=1}^{k} r_i^{(s)^2} - \sum_{s=1}^{k} r_i^{(s)} l-1}}{\prod_{s=1}^{l-1} \prod_{i=1}^{s} y_i^{(1)} + \cdots + y_i^{(k)}} \prod_{i=1}^{l-2} (q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_i^{(1)} - r_i^{(2)}} \cdots (q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_i^{(k)}} \prod_{i=1}^{l-1} y_i^{(1)} + \cdots + y_i^{(k)}
 \]

- **for \(D^{(2)}_l \):**
 \[
 \text{ch} \ W_L^T = \sum_{r_1^{(1)} \geq \cdots \geq r_1^{(k)} \geq 0} \frac{q^{\frac{1}{2} \sum_{i=1}^{l-2} \sum_{s=1}^{k} r_i^{(s)^2} - \sum_{s=1}^{k} r_i^{(s)} l-1}}{\prod_{s=1}^{l-1} \prod_{i=1}^{s} y_i^{(1)} + \cdots + y_i^{(k)}} \prod_{i=1}^{l-2} (q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_i^{(1)} - r_i^{(2)}} \cdots (q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_i^{(k)}} \prod_{i=1}^{l-1} y_i^{(1)} + \cdots + y_i^{(k)}
 \]

- **for \(E^{(2)}_6 \):**
 \[
 \text{ch} \ W_L^T = \sum_{r_1^{(1)} \geq \cdots \geq r_1^{(k)} \geq 0} \frac{q^{\frac{1}{2} \sum_{i=1}^{l-2} \sum_{s=1}^{k} r_i^{(s)^2} - \sum_{s=1}^{k} r_i^{(s)} l-1}}{\prod_{s=1}^{l-1} \prod_{i=1}^{s} y_i^{(1)} + \cdots + y_i^{(k)}} \prod_{i=1}^{l-2} (q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_i^{(1)} - r_i^{(2)}} \cdots (q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_i^{(k)}} \prod_{i=1}^{l-1} y_i^{(1)} + \cdots + y_i^{(k)}
 \]

- **for \(D^{(3)}_4 \):**
 \[
 \text{ch} \ W_L^T = \sum_{r_1^{(1)} \geq \cdots \geq r_1^{(k)} \geq 0} \frac{q^{\frac{1}{2} \sum_{i=1}^{l-2} \sum_{s=1}^{k} r_i^{(s)^2} - \sum_{s=1}^{k} r_i^{(s)} l-1}}{\prod_{s=1}^{l-1} \prod_{i=1}^{s} y_i^{(1)} + \cdots + y_i^{(k)}} \prod_{i=1}^{l-2} (q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_i^{(1)} - r_i^{(2)}} \cdots (q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_i^{(k)}} \prod_{i=1}^{l-1} y_i^{(1)} + \cdots + y_i^{(k)}
 \]
for $D_4^{(3)}$:

\[
\chi W_{L_k}^T = \sum_{r_1^{(1)} \geq \cdots \geq r_1^{(k)} \geq 0} \frac{q^{\frac{1}{2}} \sum_{s=1}^{k} r_1^{(s)^2}}{(q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_1^{(1)}-r_1^{(2)}} \cdots (q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_1^{(k)}}} y_1^{r_1^{(1)}+\cdots+r_1^{(k)}} \times \sum_{r_2^{(1)} \geq \cdots \geq r_2^{(k)} \geq 0} \frac{q^{\frac{1}{2}} \sum_{s=1}^{k} r_2^{(s)^2}}{(q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_2^{(1)}-r_2^{(2)}} \cdots (q^{\frac{1}{2}}; q^{\frac{1}{2}})_{r_2^{(k)}}} y_2^{r_2^{(1)}+\cdots+r_2^{(k)}}.
\]

Acknowledgement

We are grateful to Mirko Primc for his useful comments and support. The first named author would also like to thank Dražen Adamović. The first author is partially supported by the Croatian Science Foundation under the project 2634 and by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004).

References

(Marijana Butorac) Department of Mathematics, University of Rijeka, Radmile Matejić 2, 51 000 Rijeka, Croatia.
mbutorac@math.uniri.hr

(Christopher Sadowski) Department of Mathematics and Computer Science, Ursinus College, Collegeville, PA 19426, USA.
csadowski@ Ursinus.edu

This paper is available via http://nyjm.albany.edu/j/2019/25-3.html.