Equivariant bundles and adapted connections

Indranil Biswas, Arjun Paul and Arideep Saha

Abstract. Given a complex manifold M equipped with a holomorphic action of a connected complex Lie group G, and a holomorphic principal H–bundle E_H over X equipped with a G–connection h, we investigate the connections on the principal H–bundle E_H that are (strongly) adapted to h. Examples are provided by holomorphic principal H–bundles equipped with a flat partial connection over a foliated manifold.

Contents

1. Introduction 859
2. Preliminaries 860
 2.1. Atiyah bundle 860
 2.2. G–connections on E_H 861
 2.3. Distributions under a flow 863
3. Connections and (strongly) adapted connections 864
 3.1. Definitions 864
 3.2. Equivariant bundles and adaptable connections 865
4. Criterion for adapted connection 867
5. Holomorphic foliations and strongly adapted connections 870
References 871

1. Introduction

Let X be a complex manifold, G a connected complex Lie group and $\rho : G \times X \rightarrow X$ a holomorphic action of G on X. The Lie algebra of G is denoted by \mathfrak{g}. Let $p : E_H \rightarrow X$ be a holomorphic principal H–bundle, where H is a complex Lie group. A G–connection on E_H is a \mathbb{C}–linear map $h : \mathfrak{g} \rightarrow H^0(E_H, TE_H)^H$ such that for every $v \in \mathfrak{g}$, the vector field $dp \circ h(v)$ on X coincides with the one defined by v using the above action ρ.

Received January 15, 2017.
2010 Mathematics Subject Classification. 32M10, 53B15, 37F75.
Key words and phrases. Equivariant bundle, G–connection, adapted connection, holomorphic foliation.
I. BISWAS, A. PAUL AND A. SAHA (see Section 2.2). In [BP17], G–connections were investigated, in particular, a criterion was given for the existence of a G–connection.

Here we continue the investigations of G–connections. More precisely, we study the interactions of G–connections on E_H with the holomorphic connections on the principal H–bundle E_H. There are two possible compatibility conditions between them which are called “adapted” and “strongly adapted” (see Section 3.1). To explain these conditions, if h is given by a holomorphic action ρ_E of G on E_H, then a holomorphic connection η on the principal H–bundle E_H is adapted to h if and only if η is preserved by ρ_E; such an adapted connection η is called strongly adapted if the image of the homomorphism h is contained in the horizontal subbundle of TE_H for the connection η.

The property of a holomorphic connection η on a holomorphic principal H–bundle E_H that it is strongly adapted to a G–connection h on E_H can also be formulated in the context of foliated manifolds and principal H–bundles on them equipped with a flat partial connection; the details are in Section 5.

2. Preliminaries

2.1. Atiyah bundle. Let H be a complex Lie group. Its Lie algebra will be denoted by \mathfrak{h}. Let X be a connected complex manifold and

$$p : E_H \rightarrow X$$

a holomorphic principal H–bundle over X. This means that E_H is a complex manifold equipped with a holomorphic right action of H

$$a : E_H \times H \rightarrow E_H$$

such that

- $p \circ a = p \circ p_{E_H}$, where p_{E_H} is the projection of $E_H \times H$ to E_H, and
- the map $(p_{E_H}, a) : E_H \times H \rightarrow E_H \times_X E_H$ is an isomorphism.

Note that the first condition means that the action of H takes a fiber of p to itself, so the image of the map (p_{E_H}, a) is contained in the fiber product $E_H \times_X E_H$. The second condition above means that the action of H on a fiber of p is free and transitive.

The adjoint bundle for E_H

$$\text{ad}(E_H) := E_H \times^H \mathfrak{h} \rightarrow X$$

is the holomorphic vector bundle over X associated to E_H for the adjoint action of H on the Lie algebra \mathfrak{h}.

The holomorphic tangent (respectively, cotangent) bundle of a complex manifold Y will be denoted by TY (respectively, T^*Y). The tangent bundle of a real manifold Y will be denoted by $T^R Y$.

The Atiyah bundle for E_H

$$\text{At}(E_H) := (TE_H)/H \rightarrow E_H/H = X$$
is a holomorphic vector bundle over X whose rank is $\dim X + \dim \mathfrak{h}$; see [At57]. Let

$$T_{E_H/X} \subset TE_H$$

be the relative tangent bundle for the projection p in (2.1). The subbundle

$$(T_{E_H/X})/H \subset (TE_H)/H = At(E_H)$$

is identified with the adjoint vector bundle $ad(E_H)$. This identification is a consequence of the isomorphism of $T_{E_H/X}$ with the trivial vector bundle $E_H \times \mathfrak{h} \to E_H$ given by the action of H on E_H. Therefore, the short exact sequence

$$0 \to T_{E_H/X} \to TE_H \xrightarrow{dp} p^*TX \to 0,$$

where dp is the differential of p, produces a short exact sequence on X

(2.2) $$0 \to \text{ad}(E_H) \to \text{At}(E_H) \xrightarrow{dp} TX \to 0,$$

which is known as the Atiyah exact sequence for E_H. For simplicity, we have used the same notation dp for the differential $TE_H \to p^*TX$ over E_H as well as its descent $At(E_H) \to TX$ to X. A holomorphic connection on E_H is a holomorphic homomorphism

(2.3) $$\eta : TX \to At(E_H)$$

such that $(dp) \circ \eta = \text{Id}_{TX}$, where dp is the homomorphism in (2.2). For a holomorphic connection η on E_H, the homomorphism

$$\bigwedge^2 TX \to \text{ad}(E_H), \ v \otimes w - w \otimes v \mapsto 2(\eta(v), \eta(w)) - \eta([v, w]),$$

where v and w are locally defined holomorphic sections of TX, produces a holomorphic section of $(\bigwedge^2 T^*X) \otimes \text{ad}(E_H)$. This holomorphic section of $(\bigwedge^2 T^*X) \otimes \text{ad}(E_H)$ is called the curvature of the connection η.

The vector bundle $TE_H \otimes p^*(TX)^*$ on E_H has a natural action of H given by the action of H on TE_H and the tautological action of H on $p^*(TX)^*$. We note that a holomorphic connection on E_H is an H–invariant holomorphic section of $TE_H \otimes p^*(TX)^*$.

2.2. G–connections on E_H. Let G be a connected complex Lie group; its Lie algebra will be denoted by \mathfrak{g}. The identity element of G will be denoted by e. Let

(2.4) $$\rho : G \times X \to X$$

be a holomorphic action of G on X. Consider the holomorphic homomorphism

$$\rho' : At(E_H) \oplus (X \times \mathfrak{g}) \to TX, \ (v, w) \mapsto dp(v) - d'\rho(w),$$

where dp is the homomorphism in (2.2), and

(2.5) $$d'\rho : X \times \mathfrak{g} \to TX, \ (x, v) \mapsto (dp)(e, x)(v, 0),$$
with \((dp)(e, x) : g \oplus T_x X \rightarrow T_x X\) being the differential of \(\rho\) at \((e, x) \in G \times X\). Define the subsheaf

\[
\text{At}_\rho(E_H) := (\rho')^{-1}(0) \subset \text{At}(E_H) \oplus (X \times g).
\]

Since the differential \(dp\) is surjective, it follows that \(\rho'\) is surjective. This implies that \(\text{At}_\rho(E_H)\) is a holomorphic subbundle of \(\text{At}(E_H) \oplus (X \times g)\). The vector bundle \(\text{At}_\rho(E_H)\) fits in a commutative diagram with exact rows

\[
\begin{array}{cccccccc}
0 & \rightarrow & \text{ad}(E_H) & \rightarrow & \text{At}_\rho(E_H) & \rightarrow & X \times g & \rightarrow & 0 \\
\| & \downarrow J & & \downarrow d\rho' & & & & & \\
0 & \rightarrow & \text{ad}(E_H) & \rightarrow & \text{At}(E_H) & \rightarrow & TX & \rightarrow & 0
\end{array}
\]

where \(J\) (respectively, \(q\)) is given by the projection of \(\text{At}(E_H) \oplus (X \times g)\) to \(\text{At}(E_H)\) (respectively, \(X \times g\)). (See [BP17].)

A holomorphic \(G\)–connection on \(E_H\) is a holomorphic homomorphism of vector bundles

\[
h : X \times g \rightarrow \text{At}_\rho(E_H)
\]

such that \(q \circ h = \text{Id}_{X \times g}\), where \(q\) is the homomorphism in (2.7). The curvature of a \(G\)–connection \(h\)

\[
(s, t) \mapsto [h(s), h(t)] - h([s, t])
\]

is a holomorphic section

\[
\mathcal{K}(h) \in H^0(X, \text{ad}(E_H) \otimes \bigwedge^2(X \times g)^*) = H^0(X, \text{ad}(E_H)) \otimes \bigwedge^2 g^*.
\]

We will give examples of \(G\)–connection.

Let \(a : E_H \times H \rightarrow E_H\) be the action of \(H\) on the principal \(H\)–bundle \(E_H\).

A \(G\)–action on the principal bundle \(E_H\) is a holomorphic action of \(G\) on the total space of \(E_H\)

\[
\rho_E : G \times E_H \rightarrow E_H
\]

such that

1. \(p \circ \rho_E = \rho \circ (\text{Id}_G \times p)\), where \(p\) and \(\rho\) are the maps in (2.1) and (2.4) respectively, and
2. \(\rho_E \circ (\text{Id}_G \times a) = a \circ (\rho_E \times \text{Id}_H)\) as maps from \(G \times E_H \times H\) to \(E_H\) (this condition means that the actions of \(G\) and \(H\) on \(E_H\) commute).

An equivariant principal \(H\)–bundle is a holomorphic principal \(H\)–bundle with a \(G\)–action.

Let \(\rho_E : G \times E_H \rightarrow E_H\) be a \(G\)–action on \(E_H\). Consider the homomorphism

\[
\tilde{h} : E_H \times g \rightarrow TE_H
\]

given by the differential \(d\rho_E\) of the action \(\rho_E\); more precisely,

\[
\tilde{h}(z, v) = d\rho_E(e, z)(v, 0),
\]
so \(\tilde{h}\) is the homomorphism in (2.5) when \(X\) is substituted by \(E_H\). Since the actions of \(G\) and \(H\) on \(E_H\) commute, this homomorphism \(\tilde{h}\) produces a \(G\)–connection

\[
h_0 : X \times g \rightarrow \text{At}_p(E_H)
\]

on \(E_H\); the curvature of this \(G\)–connection \(h_0\) vanishes identically [BP17, p. 355, Lemma 4.1].

Let \(Y\) be a connected compact complex manifold such that \(TY\) is holomorphically trivial. Then \(Y\) is holomorphically isomorphic to \(G/\Gamma\), where \(G\) is a connected complex Lie group and \(\Gamma \subset G\) is a cocompact lattice [Wa54]; in fact, \(G\) is the connected component, containing the identity element, of the group of all holomorphic automorphisms of \(Y\). Consider the left–translation action of \(G\) on \(G/\Gamma = Y\). A \(G\)–connection on a holomorphic principal \(H\)–bundle \(E_H\) on \(Y\) is an usual holomorphic connection on the principal \(H\)–bundle.

2.3. Distributions under a flow.

Let \(Y\) be a connected \(C^\infty\) manifold and

\[
\mathcal{D} \subset T^\mathbb{R}Y
\]

a \(C^\infty\) subbundle. In other words, \(\mathcal{D}\) is a distribution on \(Y\). The fiber of \(\mathcal{D}\) over any point \(z \in Y\) will be denoted by \(\mathcal{D}_z\).

Let \(\xi\) be a \(C^\infty\) vector field on \(Y\). Given any point \(x \in Y\), there is an open neighborhood \(x \in U_x \subset Y\) and an open interval \(0 \in I_x \subset \mathbb{R}\), such that \(\xi\) integrates to a flow

\[
\Phi_x : U_x \times I_x \rightarrow Y.
\]

For any \(t \in I_x\), define

\[
\Phi_{x,t} : U_x \rightarrow Y, \quad z \mapsto \Phi_x(z,t).
\]

Lemma 2.1. The following two are equivalent:

1. For every \(x \in Y\) and \(z \in U_x\) as above,

\[
(d\Phi_{x,t})(z)(\mathcal{D}_z) = \mathcal{D}_{\Phi_x(z,t)}(z),
\]

where \(d\Phi_{x,t}(z) : T^\mathbb{R}Y \rightarrow T_{\Phi_x(z,t)}^\mathbb{R}Y\) is the differential of the map \(\Phi_{x,t}\) at \(z\).

2. \([\xi, \mathcal{D}] \subset \mathcal{D}\).

Proof. Let \(\mathcal{W}\) denote the space of all \(C^\infty\) 1–forms on \(Y\) that vanish on \(\mathcal{D}\). The first statement is equivalent to the statement that

\[
L_\xi(w) \in \mathcal{W} \quad \forall \ w \in \mathcal{W},
\]

where \(L_\xi\) denotes the Lie derivative with respect to the vector field \(\xi\).

First assume that

\[
[\xi, \mathcal{D}] \subset \mathcal{D}.
\]
To prove that (2.12) holds, take any \(w \in W \) and any \(C^\infty \) section \(\theta \) of \(\mathcal{D} \). We have
\[
(L_\xi (w))(\theta) = \xi (w(\theta)) - w(L_\xi \theta) = \xi (w(\theta)) - w([\xi, \theta]).
\]
Now, \(w(\theta) = 0 \), and \([\xi, \theta]\) is section of \(\mathcal{D} \) by (2.13). Hence \((L_\xi (w))(\theta) = 0 \), which implies that (2.12) holds.

Now assume that (2.12) holds. To prove (2.13), let \(\theta \) be any \(C^\infty \) section of \(\mathcal{D} \). Take any \(w \in W \). We have
\[
w([\xi, \theta]) = w(L_\xi \theta) = \xi (w(\theta)) - (L_\xi w)(\theta).
\]
Now, \(w(\theta) = 0 \), and also \((L_\xi w)(\theta) = 0\) because \(L_\xi w \in W \) by (2.12). Hence (2.13) holds. \(\square \)

3. Connections and (strongly) adapted connections

3.1. Definitions. Let \(E_H \) be a holomorphic principal bundle over \(X \) such that \(E_H \) is equipped with a holomorphic connection \(\eta : TX \to At(E_H) \) (see (2.3)). Since \(At(E_H) = (TE_H)/H \), the image of \(\eta \) is a holomorphic distribution on \(E_H \); it is known as the horizontal distribution for the connection \(\eta \).

As before, a connected complex Lie group \(G \) acts holomorphically on \(X \). Given a holomorphic \(G \)-connection \(h : X \times g \to At(\rho(E_H)) \) on \(E_H \) (see (2.8)), the connection \(\eta \) is said to be adapted to \(h \) if

\[
(J \circ h)(X \times \{v\}), \eta(TX) \subset \eta(TX) \quad \forall \ v \in g,
\]

where \(J \) is the homomorphism in (2.7). Note that a \(C^\infty \) section of \(At(E_H) \) defines a \(H \)-invariant vector field on \(E_H \) of type \((1,0)\).

The connection \(\eta \) is said to be strongly adapted to \(h \) if it is adapted to \(h \), and furthermore

\[
\text{image}(J \circ h) \subset \text{image}(\eta). \tag{3.2}
\]

We will now give examples to show that the conditions in (3.1) and (3.2) are independent.

Consider the trivial action of the multiplicative group \(\mathbb{C}^* = \mathbb{C} \setminus \{0\} \) on \(X \). Let \(E \) be a holomorphic principal \(GL(\mathbb{C}) \)-bundle on \(X \) admitting a holomorphic connection, for example \(E \) can be the trivial holomorphic principal \(GL(\mathbb{C}) \)-bundle \(X \times GL(\mathbb{C}) \) on \(X \). The center of \(GL(\mathbb{C}) \) is identified with \(\mathbb{C}^* \) by sending any \(c \in \mathbb{C}^* \) to \(c \cdot \text{Id}_{\mathbb{C}^r} \in GL(\mathbb{C}) \). Using this identification, the action of the center of \(GL(\mathbb{C}) \) on \(E \) produces an action of \(\mathbb{C}^* \) on \(E \). Since \(\mathbb{C}^* \) is in the center of \(GL(\mathbb{C}) \), the actions of \(\mathbb{C}^* \) and \(GL(\mathbb{C}) \) on \(E \) commute. If \(E' \) is the vector bundle of rank \(r \) associated to \(E \) by the standard representation of \(GL(\mathbb{C}) \), then this action of \(\mathbb{C}^* \) on \(E \) corresponds to the action of \(\mathbb{C}^* \) on \(E' \) as scalar multiplications. Let \(h \) be the holomorphic \(\mathbb{C}^* \)-connection on \(E \) given by this action of \(\mathbb{C}^* \) on \(E \) (see
Any holomorphic connection on the principal $GL(r, \mathbb{C})$–bundle E is adapted to h. But (3.2) fails for every holomorphic connection on E.

Now take $X = \mathbb{C}^2$ and $G = \mathbb{C} = H$. Let E_H be the trivial principal \mathbb{C}–bundle $\mathbb{C}^2 \times \mathbb{C} \to \mathbb{C}^2$. Take ρ to be the action of \mathbb{C} on \mathbb{C}^2 defined by $(z, (x, y)) \mapsto (x + z, y)$, $z \in \mathbb{C}$, $(x, y) \in \mathbb{C}^2$.

This action of \mathbb{C} on X and the trivial action of \mathbb{C} on \mathbb{C} together define an action of \mathbb{C} on $E_H = X \times \mathbb{C}$. Let h be the holomorphic \mathbb{C}–connection on E_H associated to this action of \mathbb{C} on E_H (see (2.11)). Let D be the holomorphic connection on the principal H–bundle E_H defined by $f \mapsto df + xf \cdot dy$, where f is any holomorphic function on \mathbb{C}^2 (holomorphic sections of E_H are holomorphic functions) and d denotes the standard de Rham differential. Then (3.2) holds while (3.1) fails.

3.2. Equivariant bundles and adaptable connections

As in (2.10), take a G–action ρ_E on E_H. As mentioned earlier, there is a natural G–connection on E_H (3.3) $h_0 : X \times g \to At_\rho(E_H)$ corresponding to ρ_E.

Let $p_X : G \times X \to X$ be the natural projection. The action ρ_E produces a holomorphic isomorphism of principal H–bundles

(3.4) \[\beta : p_X^*E_H \to \rho^*E_H, \quad \beta(g, x)(z) = \rho_E(g, z) \]

for all $g \in G, x \in X$ and $z \in (E_H)_x$, where ρ is the map in (2.4).

For any $g \in G$, let

(3.5) \[\beta^g : E_H \to (\rho \circ j_g)^*E_H, \quad z \mapsto \beta(g, x)(z) = \rho_E(g, z) \]

for all $x \in X$ and $z \in (E_H)_x$. The map from the holomorphic connections on E_H to the holomorphic connections on $(\rho \circ j_g)^*E_H$ induced by the above isomorphism β^g will be denoted by β^g_\ast; note that β^g_\ast is a bijection.

Proposition 3.1. A holomorphic connection η on E_H is adapted to the G–connection h_0 in (3.3) associated to ρ_E if and only if for all $g \in G$,

(3.6) \[(\rho \circ j_g)^*\eta = \beta^g_\ast(\eta) \]

(both are connections on the principal H–bundle $(\rho \circ j_g)^*E_H$).

Proof. First assume that η is adapted to h_0. Take any $v \in \mathfrak{g}$. The flow on E_H generated by v sends any $t \in \mathbb{R}$ to the biholomorphism

(3.7) \[F_t : E_H \to E_H, \quad z \mapsto \rho_E(\exp(tv), z). \]
Note that F_t coincides with $\beta^{\exp(tv)}$ constructed in (3.5). Consider the H-invariant distribution

$$D^n := \image(\eta) \subset TE_H.$$

Its fiber over any point $z \in E_H$ will be denoted by D^n_z. Since η is adapted to h_0, from Lemma 2.1 it follows that

(3.7) \hspace{1cm} (dF_t)(z)(D^n_z) = D^n_{F_t(z)}

for all $z \in E_H$ and $t \in \mathbb{R}$, where $(dF_t)(z) : T_z E_H \rightarrow T_{F_t(z)} E_H$ is the differential of the map F_t. Since the subset $\{\exp(tv)\}_{v \in \mathbb{R}, t \in \mathbb{R}} \subset G$ is dense in the analytic topology (recall that G is connected), and also $F_t = \beta^{\exp(tv)}$, from (3.7) we conclude that (3.6) holds for all $g \in G$.

Now assume that (3.6) holds for all $g \in G$. This implies that (3.7) holds for all $z \in E_H$ and $t \in \mathbb{R}$. Consequently, from Lemma 2.1 we conclude that η is adapted to h_0. \hfill \Box

Take any point $x \in X$. Define

$$\rho_x : G \rightarrow X, \hspace{1cm} g \mapsto \rho \circ j_g(x) = \rho(g, x).$$

Consider the map

$$\rho_{E,x} : G \times (E_H)_x \rightarrow \rho_x^* E_H, \hspace{1cm} (g, z) \mapsto \rho_E(g, z).$$

Since this $\rho_{E,x}$ is H–equivariant (recall that the actions of G and H on E_H commute), it identifies the pulled back principal H–bundle $\rho_x^* E_H$ with the trivial principal H–bundle $G \times (E_H)_x \rightarrow G$. Let D^0_x be the holomorphic connection on the principal H–bundle $\rho_x^* E_H$ induced by the trivial connection on $G \times (E_H)_x$ using the above isomorphism $\rho_{E,x}$. Note that $\rho_x^* E_H$ is identified with the restriction of $\rho^* E_H$ to $G \times \{x\}$, because ρ_x is the restriction of ρ to $G \times \{x\}$. Therefore, $\rho^* \eta|_{G \times \{x\}}$ is also a connection on $\rho_x^* E_H$.

Proposition 3.2. A holomorphic connection η on E_H is strongly adapted to the G–connection h_0 in (3.3) if and only if the following two hold:

1. For all $g \in G$,

 $$(\rho \circ j_g)^* \eta = \beta^0_g(\eta).$$

2. For every $x \in X$, the connection D^0_x on $\rho_x^* E_H$ coincides with the connection $\rho^* \eta|_{G \times \{x\}}$.

Proof. First assume that η is strongly adapted to h_0. Since η is adapted to h_0, Proposition 3.1 says that $(\rho \circ j_g)^* \eta = \beta^0_g(\eta)$ for all $g \in G$. The given condition (3.2) implies that the connection $\rho^* \eta|_{G \times \{x\}}$.

The converse is similarly proved. Assume that the two statements in the proposition hold. From Proposition 3.1 we know that η is adapted to h_0. The second condition in the proposition implies that (3.2) holds. \hfill \Box
4. Criterion for adapted connection

Let $\eta : TX \rightarrow \text{At}(E_H)$ be a holomorphic connection on E_H. Let

\begin{equation}
\tilde{\eta} : X \times g \rightarrow \text{At}(E_H) \oplus (X \times g)
\end{equation}

be the O_X–linear homomorphism defined by

$$(x, v) \mapsto (\eta(d'\rho(x, v)), (x, v)),$$

where $d'\rho$ is the homomorphism in (2.5). Since we have $(dp) \circ \eta = \text{Id}_{TX}$, where dp is the homomorphism in (2.2), it follows immediately that the image of $\tilde{\eta}$ is contained in $\text{At}_\rho(E_H) := (\rho')^{-1}(0)$ (see (2.6)). The homomorphism $\tilde{\eta}$ evidently is a G–connection on E_H.

Let $K(\eta) \in H^0(X, \Omega_X^2 \otimes \text{ad}(E_H))$ be the curvature of the connection η, where $\Omega_X^2 = \bigwedge^2 T^*X$. For any $w \in T_x X$, let

\begin{equation}
i_w(K(\eta)(x)) \in (T^*X)_x \otimes \text{ad}(E_H)_x = (T^*X \otimes \text{ad}(E_H))_x
\end{equation}

be the contraction of $K(\eta)(x) \in (\Omega_X^2 \otimes \text{ad}(E_H))_x$ by the tangent vector $w \in T_x X$.

Lemma 4.1. The connection η on E_H is strongly adapted to the above constructed G–connection $\tilde{\eta}$ if and only if for all $v \in g$ and $x \in X$,

\begin{equation}
i_d'\rho(x,v)(K(\eta)(x)) = 0,
\end{equation}

where $d'\rho$ is defined in (2.5) (see (4.2) for the contraction).

Proof. From the construction of $\tilde{\eta}$ in (4.1) it follows immediately that the condition in (3.2) holds. We need to show that (3.1) holds if and only if (4.3) holds.

To prove this, we recall a construction of the curvature $K(\eta)$. Given a point $x \in X$ and holomorphic tangent vectors $v, w \in T_x X$, extend v, w to vector fields \tilde{v}, \tilde{w} of type $(1, 0)$ on some open neighborhood of the point x. Let $\tilde{v} = \eta(\tilde{v})$ and $\tilde{w} = \eta(\tilde{w})$ be the horizontal lifts of \tilde{v} and \tilde{w} respectively, for the connection η. Then

$$K(\eta)(x)(v, w) = ([\tilde{v}, \tilde{w}]_{\text{Vert}})|_{p^{-1}(x)},$$

where $[\tilde{v}, \tilde{w}]_{\text{Vert}}$ is the component of the Lie bracket $[\tilde{v}, \tilde{w}]$ in the vertical direction (for the projection p). We note that the section $([\tilde{v}, \tilde{w}]_{\text{Vert}})|_{p^{-1}(x)}$ of TE_H/X over $p^{-1}(x)$ is H–invariant and hence it defines an element of the fiber $\text{ad}(E_H)_x$ over x; recall that $\text{ad}(E_H)$ is identified with $(TE_H/X)/H$. The element $([\tilde{v}, \tilde{w}]_{\text{Vert}})|_{p^{-1}(x)} \in \text{ad}(E_H)_x$ does not depend on the choice of the extensions \tilde{v} and \tilde{w} of v and w respectively. From this description of $K(\eta)$ it follows immediately that (3.1) holds if and only if (4.3) holds.

From the proof of Lemma 4.1 we have the following:

Corollary 4.2. The connection η on E_H is adapted to the above constructed G–connection $\tilde{\eta}$ if and only if the condition in (4.3) holds. In other words, the connection η on E_H is strongly adapted to $\tilde{\eta}$ if η is adapted to $\tilde{\eta}$.
Take a \(\mathbb{C}\)-linear map
\[
\varphi_0 : \mathfrak{g} \longrightarrow H^0(X, \text{ad}(E_H)).
\] (4.4)
For any \(v \in \mathfrak{g}\), the section \(\varphi_0(v) \in H^0(X, \text{ad}(E_H))\) defines a holomorphic vertical tangent vector field on \(E_H\) for the projection \(p\). This vertical tangent vector field on \(E_H\) will be denoted by \(\varphi(v)\). Let \(U \subset X\) be an open subset and \(V\) a \(C^\infty\) vector field on \(U\) of type \((1, 0)\). Let \(V' = \eta(V)\) be the horizontal lift of \(V\) on \(p^{-1}(U)\) for the holomorphic connection \(\eta\) on \(E_H\). Let \(f_0\) be any \(C^\infty\) function on \(U\). Then \(V'(f_0 \circ p)\) is a \(H\)-invariant function on \(p^{-1}(U)\), and hence
\[
\varphi(v)(V'(f_0 \circ p)) = 0.
\] (5.5)
On the other hand,
\[
\varphi(v)(f_0 \circ p) = 0
\] (5.6)
because \(\varphi(v)\) is a vertical vector field. From (5.5) and (5.6) we conclude that
\[
[\varphi(v), V'](f_0 \circ p) = 0.
\]
In other words,
\[
[\varphi(v), V'] = [\varphi(v), V']_{\text{Vert}},
\] (5.7)
where \([\varphi(v), V']_{\text{Vert}}\) is the vertical component of \([\varphi(v), V']\). The vector field \([\varphi(v), V']\) is \(H\)-invariant because both \(\varphi(v)\) and \(V'\) are \(H\)-invariant. If \(f_1\) is a \(C^\infty\) function on \(U\), then note that
\[
[\varphi(v), (f_1 \circ p) \cdot V'] = (f_1 \circ p) \cdot [\varphi(v), V']
\]
because \(\varphi(v)(f_1 \circ p) = 0\). Clearly, the vector field \((f_1 \circ p) \cdot V'\) is the horizontal lift of the vector field \(f_1 \cdot V\) on \(U\) for the connection \(\eta\). From these observations we conclude that there is a homomorphism
\[
\tilde{\varphi} : \mathfrak{g} \otimes \mathbb{C} T_x X \longrightarrow \text{ad}(E_H)
\] (5.8)
that sends \(v \otimes w \in \mathfrak{g} \otimes T_x X\) to \([\varphi(v), V'](x)\), where \(V' = \eta(V)\) is the horizontal lift, with respect to the connection \(\eta\), of a vector field \(V\) defined on a neighborhood of the point \(x \in X\) with \(V(x) = w\). Note that \([\varphi(v), V'](x)\) does not depend on the choice of the extension \(V\) of \(w\).

The contraction in (4.2) produces a homomorphism
\[
\Pi : \mathfrak{g} \otimes \mathbb{C} T_x X \longrightarrow \text{ad}(E_H)
\] (5.9)
that sends \(v \otimes w \in \mathfrak{g} \otimes T_x X\) to
\[
i_w i_{d'(p(x,v))}(\mathcal{K}(\eta)(x)) \in \text{ad}(E_H)_x,
\]
which is the contraction of \(i_{d'(p(x,v))}(\mathcal{K}(\eta)(x)) \in (T^*X)_x \otimes \text{ad}(E_H)_x\) (see (2.5), (4.2)) by the tangent vector \(w \in T_x X\).
Theorem 4.3. Let X be a complex manifold equipped with a holomorphic action of G and E_H a holomorphic principal H–bundle on X equipped with a holomorphic connection η. Then there is a G–connection h on E_H such that η is adapted to h if and only if there is a homomorphism φ_0 as in (4.4) such that the homomorphism $\tilde{\varphi}$ in (4.8) coincides with the homomorphism $-\Pi$, where Π is constructed in (4.9).

Proof. Let $h : g \rightarrow H^0(X, \text{At}_\rho(E_H))$ be a G–connection on E_H such that η is adapted to h. For any $v \in g$, consider $J \circ h(v) - \eta(v') \in H^0(X, \text{At}(E_H))$, where J is the homomorphism in (2.7) and v' is the holomorphic vector field on X defined by $x \mapsto d'\rho(x, v)$ (see (2.5)). Note that $dp \circ J \circ h(v) = v'$, where dp is the homomorphism in (2.2). Therefore, we have $J \circ h(v) - \eta(v') \in H^0(X, \text{ad}(E_H)) \subset H^0(X, \text{At}(E_H))$ (see (2.7)). Now define $\varphi_0 : g \rightarrow H^0(X, \text{ad}(E_H)), \ v \mapsto J \circ h(v) - \eta(v')$.

We will show that the homomorphism $\tilde{\varphi}$ in (4.8) for this φ_0 coincides with the homomorphism $-\Pi$.

Take any $v \in g$. Given any $x \in X$ and any $w \in T_x X$, let V be any C^∞ vector field of type $(1, 0)$, defined on an open neighborhood of $x \in X$, such that $[v', V] = 0$.

Since η is adapted to h, the Lie bracket $[J \circ h(v), \eta(V)]$ lies in the horizontal subbundle $\eta(TX) \subset TE_H$. In other words, the vertical component of $[J \circ h(v), \eta(V)]$ vanishes identically.

The Lie bracket $[\eta(v'), \eta(V)]$ is vertical because $dp([\eta(v'), \eta(V)]) = [v', V] = 0$.

From (4.7) we know that the Lie bracket $[\varphi(v), \eta(V)]$ is vertical, where $\varphi(v)$ is the vertical vector field corresponding to $\varphi_0(v) \in H^0(X, \text{ad}(E_H))$.

This and the fact that $[\eta(v'), \eta(V)]$ is vertical together imply that

$$[\varphi(v) + \eta(v'), \eta(V)] = [J \circ h(v), \eta(V)]$$

is vertical. But it was shown above that the vertical component of $[J \circ h(v), \eta(V)]$ vanishes identically. Hence we conclude that $[J \circ h(v), \eta(V)] = 0$.

Consequently, we have

$$[\varphi(v), \eta(V)] = -[\eta(v'), \eta(V)]$$
for all \(v \in g \). Since \([\varphi(v), \eta(V)] = \tilde{\varphi}(v \otimes V)\) and \([\eta(v'), \eta(V)] = \Pi(v \otimes V)\), from (4.11) it follows that

\[
\tilde{\varphi} = -\Pi.
\]

To prove the converse, take any homomorphism \(\varphi_0 \) as in (4.4) such that

\[
(4.12) \quad \tilde{\varphi} = -\Pi.
\]

Now define a \(G \)-connection

\[
h : g \rightarrow H^0(X, At_\rho(E_H)), v \mapsto (\varphi_0(v) + \eta(v'), X \times \{v\}).
\]

We will show that \(\eta \) is adapted to \(h \).

Let \(h : g \rightarrow H^0(X, At_\rho(E_H)) \) be a \(G \)-connection on \(E_H \). Take any \(\theta \in C^\infty(X, At(E_H)) \), where \(a \) and \(b \) are nonnegative integers. Note that \(\theta \) defines a \(H \)-invariant section of the vector bundle \((TE_H)^{\otimes a} \otimes (T^*E_H)^{\otimes b}\) on \(E_H \); this section of \((TE_H)^{\otimes a} \otimes (T^*E_H)^{\otimes b}\) will be denoted by \(\Theta \). We say that \(\theta \) is preserved by \(h \) if

\[
L_{J\circ h(v)} \Theta = 0 \quad \forall \quad v \in g,
\]

where \(L_\mathcal{J}(v) \) is the Lie derivative with respect to the vector field \(J \circ h(v) \) on \(E_H \) (the homomorphism \(J \) is constructed in (2.7)).

If \(h \) is the \(G \)-connection associated to a \(G \)-action \(\rho_E \) on \(E_H \), then it is straight-forward to check that \(\theta \) is preserved by \(h \) if and only if the section \(\Theta \) is preserved by the action \(\rho_E \) on \(E_H \).

5. Holomorphic foliations and strongly adapted connections

As before, \(X \) is a complex manifold. Let

\[
\mathcal{F} \subset TX
\]

be a holomorphic foliation on \(X \), which means that \(\mathcal{F} \) is a holomorphic subbundle of \(TX \) such that for any two sections \(s \) and \(t \) of \(\mathcal{F} \) defined over some open subset of \(X \), the Lie bracket \([s, t]\) is also a section of \(\mathcal{F} \) [La77].

Let \(E_H \) be a holomorphic principal \(H \)-bundle on \(X \).

Consider the Atiyah exact sequence for \(E_H \) in (2.2). Define

\[
At_\mathcal{F}(E_H) := (dp)^{-1}(\mathcal{F}) \subset At(E_H).
\]
So, from (2.2) we have the short exact sequence of holomorphic vector bundles

\[(5.1) \quad 0 \rightarrow \text{ad}(E_H) \rightarrow \text{At}_F(E_H) \xrightarrow{dp} \mathcal{F} \rightarrow 0, \]

where \(\widetilde{dp} \) is the restriction of \(dp \) to \(\text{At}_F(E_H) \). A holomorphic partial connection on \(E_H \) is a homomorphism

\[D : \mathcal{F} \rightarrow \text{At}_F(E_H) \]

such that \(\widetilde{dp} \circ D = \text{Id}_F \) [La77].

Given such a holomorphic partial connection \(D \), the homomorphism

\[\bigwedge^2 \mathcal{F} \rightarrow \text{ad}(E_H), \quad v \otimes w - w \otimes v \mapsto 2([D(v), D(w)] - D([v, w])), \]

where \(v \) and \(w \) are locally defined holomorphic sections of \(\mathcal{F} \), produces a holomorphic section of \(\bigwedge^2 \mathcal{F}^* \otimes \text{ad}(E_H) \). This holomorphic section of \(\bigwedge^2 \mathcal{F}^* \otimes \text{ad}(E_H) \) is called the curvature of the partial connection \(D \). A holomorphic partial connection is called flat if its curvature vanishes identically.

Let \(\eta : TX \rightarrow \text{At}(E_H) \) be a holomorphic connection on the principal \(H \)-bundle \(E_H \). As before, the curvature of \(\eta \) will be denoted by \(\mathcal{K}(\eta) \). Let

\[D : \mathcal{F} \rightarrow \text{At}_F(E_H) \]

be a flat holomorphic partial connection on \(E_H \).

The connection \(\eta \) is said to be strongly adapted to \(D \) if

- the restriction \(\eta|_F : \mathcal{F} \rightarrow \text{At}(E_H) \) coincides with \(D \), and
- for any \(x \in X \) and \(w \in \mathcal{F}_x \), the contraction

\[i_w \mathcal{K}(\eta)(x) \in T^*_x X \otimes \text{ad}(E_H)_x \]

vanishes.

Corollary 5.1. Suppose that \(\mathcal{F} \) is given by a holomorphic action \(\rho \) of a connected complex Lie group \(G \) on \(X \) (so the leaves of \(\mathcal{F} \) are the orbits of \(G \)), and also assume that \(D \) is given by a \(G \)-action \(\rho_E \) on \(E_H \) (so the tangent spaces to the leaves in \(E_H \) are the horizontal subspaces). Then \(\eta \) is strongly adapted to \(D \) if and only if \(\eta \) is strongly adapted to the \(G \)-connection on \(E_H \) given by \(\rho_E \).

Proof. The above condition that \(\eta|_F = D \) is equivalent to the condition that the \(G \)-connection \(\tilde{\eta} \) constructed in (4.1) from \(\eta \) coincides with the \(G \)-connection on \(E_H \) given by the above \(G \)-action \(\rho_E \). Therefore, the result follows from Lemma 4.1. \(\square \)

References

(Indranil Biswas) School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
indranil@math.tifr.res.in

(Arjun Paul) School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
apmath90@math.tifr.res.in

(Arideep Saha) School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
arideep@math.tifr.res.in

This paper is available via http://nyjm.albany.edu/j/2017/23-39.html.