NODES ON SEXTIC HYPERSURFACES IN \mathbb{P}^3

JONATHAN WAHL

In this note we present a coding theory result which, together with Theorem 3.6.1 of [3], gives a short proof of a theorem of D. Jaffe and D. Ruberman:

Theorem [5]. A sextic hypersurface in \mathbb{P}^3 has at most 65 nodes.

W. Barth [1] has constructed an example with 65 nodes. Following V. Nikulin [7] and A. Beauville [2], one must limit the size of an even set of nodes, and then prove a result about binary linear codes (i.e., linear subspaces of \mathbb{F}^n, where \mathbb{F} is the field of two elements). The first step is the aforementioned result of Casnati–Catanese:

Theorem [3]. On a sextic hypersurface, an even set of nodes has cardinality 24, 32 or 40.

The desired theorem will follow from:

Theorem A. Let $V \subset \mathbb{F}^{66}$ be a code, with weights from among 24, 32 and 40. Then $\dim(V) \leq 12$.

1. Codes from nodal hypersurfaces

(1.1) Let $\Sigma \subset \mathbb{P}^3$ be a hypersurface of degree d having only μ ordinary double points as singularities. Let $\pi : S \to \Sigma$ be the minimal resolution of the singularities, with exceptional (-2)-curves E_i. Thus

$$E_i \cdot E_j = -2\delta_{ij},$$

S is diffeomorphic to a smooth hypersurface of degree d.

Received June 10, 1997. This research was partially supported by NSF Grant DMS-9027117.
(1.2) The classes $[E_i]$ in $H^2(S; \mathbb{Z})$ span a not necessarily primitive sublattice of rank μ. A subset $I \subset \{1, 2, \ldots, \mu\}$ for which $\Sigma[E_i]$ ($i \in I$) is divisible by 2 in $H^2(S; \mathbb{Z})$ (and therefore in $\text{Pic}(S)$) is called even (or strictly even in [4]). More generally, consider for any subset I the homomorphism

$$\varphi : \mathbb{F}^I \to H^2(S, \mathbb{F}),$$

associating to each standard basis vector e_i the mod 2 class of $[E_i]$. We define the code

$$\text{Code}(I) \equiv \text{Ker}(\varphi).$$

A non-0 element corresponds exactly to an even subset J of I; the weight of such a “word” is its number of non-zero entries, i.e., $|J|$. $\text{Im}(\varphi)$ is totally isotropic by (1.1.1); thus, $\dim(\text{Im}(\varphi)) \leq \frac{1}{2}b_2(S)$, whence

$$(1.4.1) \quad \dim \text{Code}(I) \geq \text{Card}(I) - \frac{1}{2}b_2(S).$$

In particular, when $\mu > \frac{1}{2}b_2(S)$ one has a non-trivial code.

(1.5) It is an interesting question to determine for each d the possible cardinality t of an even set of nodes. By studying the corresponding double cover, one finds: For $d = 4$, one has $t = 8$ or 16 [7]; for $d = 5$, $t = 16$ or 20 [2]. The recent Theorem 3.6.1 of [3] proves that for $d = 6$, one has $t = 24, 32$ or 40. Since b_2 of a smooth sextic is 106, the result of [3] becomes

Theorem 1.6. Let $\Sigma \subset \mathbb{P}^3$ be a nodal sextic hypersurface with at least μ nodes. Then there is a code $V \subset \mathbb{F}^\mu$ of dimension $\geq \mu - 53$, all of whose weights are among $\{24, 32, 40\}$.

Let I be any set of μ nodes. This result plus our Theorem A will imply the 63-node bound for sextics.

2. Proof of Theorem A

(2.1) The \mathbb{F}-inner product on \mathbb{F}^μ (counting mod 2 the number of overlaps of two words) makes $V^* \subset \mathbb{F}^\mu$. V is called even if all words have even weight, double even if the weights are divisible by 4. Every doubly even code is automatically isotropic, i.e., $V \subset V^*$ (use (2.8.1) below). Since $\dim(V) = \dim(\mathbb{F}^\mu / V^*)$, a doubly even code satisfies $2d \leq n$ with equality iff the code is self-dual ($V = V^*$). The element $1 \in \mathbb{F}^\mu$ has a 1 in every position.
(2.2) Let \(V \subset \mathbb{F}^n \) be a \(d \)-dimensional code with \(a_i = a_i(V) \) words of weight \(i \). We have the simple equations

\[
\begin{align*}
(2.2.1) \quad \Sigma a_i &= 2^d - 1, \\
(2.2.2) \quad \Sigma i a_i &= n' \cdot 2^{d-1},
\end{align*}
\]

where \(n' \leq n \) is the number of entries containing 1's from words of \(V \). (2.2.1) is just an enumeration of \(V - \{0\} \). For (2.2.2) list all \(2^d \) elements of \(V \) as rows of a \(2^d \times n \) matrix of 0's and 1's. \(n' \) columns contains at least one 1; since \(V \) is a subspace, exactly half the entries are 1's. Now count the total number of 1's via rows or columns. If \(n' = n \), we say \(V \subset \mathbb{F}^n \) is a spanning code.

(2.3) For a striking generalization of (2.2.1) and (2.2.2), define the weight enumerator of the code \(V \) as

\[
W_V(x, y) = \Sigma a_i x^{n-i} y^i
\]

with \(a_0 = 1 \). \(W \) is homogeneous of degree \(d \). The MacWilliams identity (e.g., [6]) states that the enumerator of the dual code \(V^* \) is

\[
W_{V^*}(x, y) = \left(\frac{1}{2^d} \right) W_V(x + y, x - y).
\]

Writing the coefficients of \(W_{V^*} \) as \(a_i^* = a_i^*(V) \), (2.3.1) takes the form

\[
\Sigma a_i^* x^{n-i} y^i = \left(\frac{1}{2^d} \right) \cdot \{(x + y)^d + \Sigma a_i (x + y)^{n-i} (x - y)^i\}.
\]

Equations (2.2.1) and (2.2.2) are respectively the statements \(a_0^* = 1 \) and \(a_1^* \) (=number of entries not appearing in \(V \)) \(= n - n' \). More generally, we deduce the

Lemma 2.4. Let \(V \subset \mathbb{F}^n \) be a \(d \)-dimensional code. Then

\[
\begin{align*}
(2.4.1) \quad \Sigma a_i &= 2^d - 1, \\
(2.4.2) \quad \Sigma i a_i &= 2^{d-1} (n - a_i^*), \\
(2.4.3) \quad \text{If } a_1^* = 0, \text{ then} \\
\Sigma i^2 a_i &= 2^{d-1} \{a_2^* + n(n + 1)/2\}. \\
(2.4.4) \quad \text{If } a_1^* = 0, \text{ then} \\
\Sigma i^2 a_i &= 2^{d-2} \{3(a_2^* n - a_3^*) + n^2(n + 3)/2\}.
\end{align*}
\]
Proof. Expand the right-hand side of (2.3.2), carefully.

Lemma 2.5. If \(V \subseteq \mathbb{F}^n \) is a \(d \)-dimensional spanning code with only one weight \(w \), then there is an integer \(s > 0 \), so that \(w = s \cdot 2^{d-1} \) and \(n = s(2^d - 1) \).

Proof. Use (2.2.1) and (2.2.2) and fact that \(2^{d-1} \) and \(2^d - 1 \) are relatively prime.

Lemma 2.6. If \(V \subseteq \mathbb{F}^n \) is a spanning code with weights 24 and 32, then \(n \leq 63 \) and \(d \leq 9 \).

Proof. Solving (2.2.1) and (2.2.2), one finds

\[
\begin{align*}
 a_{24} &= 2^{d-1}(64 - n) - 4, \\
 a_{32} &= 2^{d-1}(n - 48) + 3.
\end{align*}
\]

Since \(a_{24} \geq 0 \), one has \(n \leq 63 \). Next, by (2.4.3), \(2^{d-1} \) divides

\[
24^2 a_{24} + 32^2 a_{32} = 2^8 \{ 2^{d-6} \cdot 9 \cdot (2^6 - n) + 2^{d-2} \cdot (n - 48) + 3 \}.
\]

So, if \(d \geq 8 \), then \(d \leq 9 \). (Of course, there are many more restrictions.)

(2.7) Suppose \(V \subseteq \mathbb{F}^n \) is a \(d \)-dimensional spanning code with weights among \{24, 32, 40\}. We solve equations (2.4.1)–(2.4.3) for the \(a_i \)'s; writing \(z = n(n+1)/2 + a_2^2 \), we find

\[
\begin{align*}
 a_{24} &= 2^{d-8} \{ z - 9 \cdot 2^3 n + 5 \cdot 2^7 \} - 10, \\
 a_{32} &= 2^{d-7} \{ -z + 2^6 n - 15 \cdot 2^7 \} + 15, \\
 a_{40} &= 2^{d-8} \{ z - 7 \cdot 2^3 n + 3 \cdot 2^9 \} - 6.
\end{align*}
\]

One can thus compute that

\[
\Sigma x^i a_i = 2^{d+4} \{ 3z - 2 \cdot 47 n + 3 \cdot 5 \cdot 2^7 \} - 2^{11} \cdot 3 \cdot 5.
\]

By (2.4.4), this expression is divisible by \(2^{d-2} \); we conclude that

(2.7.1) \quad d \leq 13

Equating with (2.4.4) and simplifying yield

\[
\begin{align*}
3 \{ a_2^* (2^6 - n) + a_3^* \} &= n^3/2 - (189/2)n^2 + 2^5 \cdot 185n \\
&
- 3 \cdot 5(2^{13} - 2^{13-d}).
\end{align*}
\]
We record this equation for special pairs \((n, d)\):

\[
(2.7.3) \quad (n, d) = (66, 13) \quad a_3^* - 2a_2^* = -13, \\
(n, d) = (65, 13) \quad a_3^* - a_2^* = -5.
\]

Proposition 2.8. Let \(V \subset \mathbb{P}^n \) be a code with weights among \(\{w_1, \ldots, w_t\} \). Let \(v \in V \) have weight \(w \). Consider the projection \(\pi : \mathbb{P}^n \to \mathbb{P}^{n\setminus w} \) onto the places off the support of \(v \). Then

(a) \(\pi(V) = V' \) is a code of dimension \(d - \dim(V \cap \mathbb{P}^w) \); in particular, if \(v \) is not a sum of two disjoint words in \(V \), then \(\dim(V') = d - 1 \).

(b) The weights of \(V' \) are all of the form \((\frac{1}{2})(w_i + w_j - w)\).

Proof. For (a), the kernel of \(\pi|V \) consists of words of \(V \) in the support of \(v \). If it contained another word \(v' \), one could write a disjoint sum \(v = v' + (v - v') \). For (b), the weight of \(\pi(v') \in V' \) is the number of positions of \(v' \) not in the support of \(v \); this equals \(w' - r \), where \(r \) is the number of overlaps between \(v \) and \(v' \). If \(v + v' = v'' \), then on the weight level

\[
(2.8.1) \quad w + w' - 2r = w''.
\]

Therefore, \(w' - r = (w' + w'' - w)/2 \), as claimed.

Proof of Theorem A. We may assume \(V \subset \mathbb{P}^n \) is spanning code, where \(n \leq 66 \). By (2.7.1) it suffices to rule out the case of \(d = 13 \). By Lemma 2.6, \(V \) contains a word of length \(40 \); we project off it, and apply Proposition 2.8. Since \(40 \) is not the sum of two weights, the projected \(V' \subset \mathbb{P}^{n-40} \) has dimension 12; the weights are among \(\{4, 8, 12, 16, 20\} \). So, \(V' \) is a doubly even code, hence \(V'' \subset \mathbb{P}^* \); as

\[
n - 40 = \dim(V') + \dim(V'' \geq 2 \cdot \dim V' = 24,
\]

one has \(n \geq 64 \). But \(V' \) could not be self-dual, as \(\| \in V^* \subset V' \) has weight \(n - 40 > 20 \). This leaves the cases \(n = 65 \) and 66.

Return to the projected 12-dimensional doubly even code \(V' \in \mathbb{P}^{25} \) or \(\mathbb{P}^{26} \). We claim \(a_2^*(V') = 0 \). Otherwise, there is a weight 2 word \(f \) orthogonal to \(V' \); the span \(V'' \) of \(f \) and \(V' \) is even (by definition), dimension 13, and orthogonal to itself. In \(\mathbb{P}^{25} \) this is impossible for dimension reasons. In \(\mathbb{P}^{26} \) the span could not contain \(\| \) (which is clearly in \(V^* \)), as its weight of 26 is not 2 plus a weight of \(V' \). This proves the claim.
On the other hand, (2.7.3) implies that V satisfies $a_0^2(V) > 0$; thus, there exists a word of the form $e_\alpha + e_\beta$ in the dual of V. A word in V thus contains either both e_α and e_β or neither. On the other hand, projecting off a word of weight 40 gives a V' with no such word of length 2; thus, every word in V of weight 40 must contain both e_α and e_β.

Intersecting V with the codimension-2 subspace $\mathbb{P}^{n-2} \subset \mathbb{P}^n$ of words containing neither e_α nor e_β gives 12-dimensional space \tilde{V}, but now the only weights can be 24 and 32. By Lemma 2.6, this is a contradiction.

Remark 2.9. Note that the inequality $\mu > \frac{1}{2} b_2(S)$, needed to assure a non-trivial code, cannot be true for $d = \text{degree}(\Sigma) \geq 18$. For, Miyaoka's inequality implies $\mu \leq (\frac{1}{3})d(d-1)^2$, while

$$b_2(S) = d^3 - 4d^2 + 6d - 2.$$

References

UNIVERSITY OF NORTH CAROLINA