LOCAL CLOSURE FUNCTIONS IN IDEAL TOPOLOGICAL SPACES

Ahmad Al-Omari1 and Takashi Noiri2

Abstract. In this paper, (X, τ, \mathcal{I}) denotes an ideal topological space. Analogously to the local function \mathcal{L}, we define an operator $\Gamma(A)(\mathcal{I}, \tau)$ called the local closure function of A with respect to \mathcal{I} and τ as follows: $\Gamma(A)(\mathcal{I}, \tau) = \{x \in X : A \cap Cl(U) \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$. We investigate properties of $\Gamma(A)(\mathcal{I}, \tau)$. Moreover, by using $\Gamma(A)(\mathcal{I}, \tau)$, we introduce an operator $\Psi: \mathcal{P}(X) \rightarrow \tau$ satisfying $\Psi(A) = X - \Gamma(X - A)$ for each $A \in \mathcal{P}(X)$. We set $\sigma = \{A \subseteq X : A \subseteq \Psi(A)\}$ and $\sigma_0 = \{A \subseteq X : A \subseteq Int(Cl(\Psi(A)))\}$ and show that $\tau_0 \subseteq \sigma \subseteq \sigma_0$.

AMS Mathematics Subject Classification (2010): 54A05, 54C10

Key words and phrases: ideal topological space, local function, local closure function

1. Introduction and preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ), $Cl(A)$ and $Int(A)$ denote the closure and the interior of A in (X, τ), respectively. An ideal \mathcal{I} on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties:

1. $A \in \mathcal{I}$ and $B \subseteq A$ implies that $B \in \mathcal{I}$.
2. $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.

An ideal topological space is a topological space (X, τ) with an ideal \mathcal{I} on X and is denoted by (X, τ, \mathcal{I}). For a subset $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X : A \cap U \notin \mathcal{I} \text{ for every open set } U \text{ containing } x\}$ is called the local function of A with respect to \mathcal{I} and τ (see [1], [2]). We simply write A^* instead of $A^*(\mathcal{I}, \tau)$ in case there is no chance for confusion. For every ideal topological space (X, τ, \mathcal{I}), there exists a topology $\tau^*(\mathcal{I})$, finer than τ, generating by the base $\beta(\mathcal{I}, \tau) = \{U - J : U \in \tau \text{ and } J \in \mathcal{I}\}$. It is known in Example 3.6 of [2] that $\beta(\mathcal{I}, \tau)$ is not always a topology. When there is no ambiguity, $\tau^*(\mathcal{I})$ is denoted by τ^*. Recall that A is said to be \ast-dense in itself (resp. \ast^*-closed, \ast-perfect) if $A \subseteq A^*$ (resp. $A^* \subseteq A$, $A = A^*$). For a subset $A \subseteq X$, $Cl^*(A)$ and $Int^*(A)$ will denote the closure and the interior of A in (X, τ^*), respectively. In 1968, Veličko [3] introduced the class of θ-open sets. A set A is said to be θ-open [3] if every point of A

1Al al-Bayt University, Faculty of Sciences, Department of Mathematics P.O. Box 130095, Mafraq 25113, Jordan, e-mail: omarimutah1@yahoo.com
22949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan, e-mail: t.noiri@nifty.com
has an open neighborhood whose closure is contained in \(A \). The \(\theta \)-interior \(\overline{\set{x}} \) of \(A \) in \(X \) is the union of all \(\theta \)-open subsets of \(A \) and is denoted by \(\text{Int}_\theta(A) \).

Naturally, the complement of a \(\theta \)-open set is said to be \(\theta \)-closed. Equivalently, \(\text{Cl}_\theta(A) = \{ x \in X : \text{Cl}(U) \cap A \neq \emptyset \text{ for every } U \in \tau(x) \} \) and a set \(A \) is \(\theta \)-closed if and only if \(A = \text{Cl}_\theta(A) \). Note that all \(\theta \)-open sets form a topology on \(X \) which is coarser than \(\tau \), and is denoted by \(\tau_\theta \) and that a space \((X, \tau)\) is regular if and only if \(\tau = \tau_\theta \). Note also that the \(\theta \)-closure of a given set need not be a \(\theta \)-closed set.

In this paper, analogously to the local function \(A^*(I, \tau) \), we define an operator \(\Gamma(A)(I, \tau) \) called the local closure function of \(A \) with respect to \(I \) and \(\tau \) as follows: \(\Gamma(A)(I, \tau) = \{ x \in X : A \cap \text{Cl}(U) \notin I \text{ for every } U \in \tau(x) \} \). We investigate properties of \(\Gamma(A)(I, \tau) \). Moreover, we introduce an operator \(\Psi_I : \mathcal{P}(X) \to \tau \) satisfying \(\Psi_I(A) = X - \Gamma(X - A) \) for each \(A \in \mathcal{P}(X) \). We set \(\sigma = \{ A \subseteq X : A \subseteq \Psi_I(A) \} \) and \(\sigma_0 = \{ A \subseteq X : A \subseteq \text{Int}((\text{Cl}(\Psi_I(A)))) \} \) and show that \(\tau_\theta \subseteq \sigma \subseteq \sigma_0 \).

2. Local closure functions

Definition 2.1. Let \((X, \tau, I)\) be an ideal topological space. For a subset \(A \) of \(X \), we define the following operator: \(\Gamma(A)(I, \tau) = \{ x \in X : A \cap \text{Cl}(U) \notin I \text{ for every } U \in \tau(x) \} \), where \(\tau(x) = \{ U \in \tau : x \in U \} \). In case there is no confusion \(\Gamma(A)(I, \tau) \) is briefly denoted by \(\Gamma(A) \) and is called the local closure function of \(A \) with respect to \(I \) and \(\tau \).

Lemma 2.2. Let \((X, \tau, I)\) be an ideal topological space. Then \(A^*(I, \tau) \subseteq \Gamma(A)(I, \tau) \) for every subset \(A \) of \(X \).

Proof. Let \(x \in A^*(I, \tau) \). Then, \(A \cap U \notin I \) for every open set \(U \) containing \(x \).

Since \(A \cap U \subseteq A \cap \text{Cl}(U) \), we have \(A \cap \text{Cl}(U) \notin I \) and hence \(x \in \Gamma(A)(I, \tau) \). \(\square \)

Example 2.3. Let \(X = \{ a, b, c, d \} \), \(\tau = \{ \phi, X, \{ a, c \}, \{ d \}, \{ a, c, d \} \} \), and \(I = \{ \phi, \{ c \} \} \). Let \(A = \{ b, c, d \} \).

Then \(\Gamma(A) = \{ a, b, c, d \} \) and \(A^* = \{ b, d \} \).

Example 2.4. Let \((X, \tau)\) be the real numbers with the left-ray topology, i.e. \(\tau = \{ (-\infty, a) : a \in X \} \cup \{ X, \phi \} \). Let \(I_f \) be the ideal of all finite subsets of \(X \). Let \(A = [0, 1] \). Then \(\Gamma(A) = \{ x \in X : A \cap \text{Cl}(U) = A \notin I_f \text{ for every } U \in \tau(x) \} = X \) and \(-1 \notin A^* \) which shows \(A^* \subseteq \Gamma(A) \).

Lemma 2.5. Let \((X, \tau)\) be a topological space and \(A \) be a subset of \(X \). Then

1. If \(A \) is open, then \(\text{Cl}(A) = \text{Cl}_\theta(A) \).

2. If \(A \) is closed, then \(\text{Int}(A) = \text{Int}_\theta(A) \).

Theorem 2.6. Let \((X, \tau)\) be a topological space, \(I \) and \(J \) be two ideals on \(X \), and let \(A \) and \(B \) be subsets of \(X \). Then the following properties hold:

1. If \(A \subseteq B \), then \(\Gamma(A) \subseteq \Gamma(B) \).
2. If $\mathcal{I} \subseteq \mathcal{J}$, then $\Gamma(A)(\mathcal{I}) \supseteq \Gamma(A)(\mathcal{J})$.

3. $\Gamma(A) = Cl(\Gamma(A)) \subseteq Cl_{\theta}(A)$ and $\Gamma(A)$ is closed.

4. If $A \subseteq \Gamma(A)$ and $\Gamma(A)$ is open, then $\Gamma(A) = Cl_{\theta}(A)$.

5. If $A \in \mathcal{I}$, then $\Gamma(A) = \emptyset$.

Proof. (1) Suppose that $x \notin \Gamma(B)$. Then there exists $U \in \tau(x)$ such that $B \cap Cl(U) \in \mathcal{I}$. Since $A \cap Cl(U) \subseteq B \cap Cl(U)$, $A \cap Cl(U) \in \mathcal{I}$. Hence $x \notin \Gamma(A)$. Thus $X \setminus \Gamma(B) \subseteq X \setminus \Gamma(A)$ or $\Gamma(A) \subseteq \Gamma(B)$.

(2) Suppose that $x \in \Gamma(A)(\mathcal{J})$. There exists $U \in \tau(x)$ such that $A \cap Cl(U) \in \mathcal{J}$. Since $\mathcal{I} \subseteq \mathcal{J}$, $A \cap Cl(U) \in \mathcal{J}$ and $x \notin \Gamma(A)(\mathcal{J})$. Therefore, $\Gamma(A)(\mathcal{J}) \subseteq \Gamma(A)(\mathcal{I})$.

(3) We have $\Gamma(A) \subseteq Cl(\Gamma(A))$ in general. Let $x \in Cl(\Gamma(A))$. Then $\Gamma(A) \cap U \neq \emptyset$ for every $U \in \tau(x)$. Therefore, there exists some $y \in \Gamma(A) \cap U$ and $U \in \tau(y)$. Since $y \in \Gamma(A)$, $A \cap Cl(U) \notin \mathcal{I}$ and hence $x \notin \Gamma(A)$. Hence we have $Cl(\Gamma(A)) \subseteq \Gamma(A)$ and hence $\Gamma(A) = Cl(\Gamma(A))$.

(4) For any subset A of X, by (3) we have $\Gamma(A) = Cl(\Gamma(A)) \subseteq Cl_{\theta}(A)$.

Since $A \subseteq \Gamma(A)$ and $\Gamma(A)$ is open, by Lemma 2.5, $Cl(\Gamma(A)) \subseteq Cl_{\theta}(\Gamma(A)) = Cl(\Gamma(A)) = \Gamma(A) \subseteq Cl_{\theta}(A)$ and hence $\Gamma(A) = Cl_{\theta}(A)$.

(5) Suppose that $x \in \Gamma(A)$. Then for any $U \in \tau(x)$, $A \cap Cl(U) \notin \mathcal{I}$. But since $A \in \mathcal{I}$, $A \cap Cl(U) \in \mathcal{I}$ for every $U \in \tau(x)$. This is a contradiction. Hence $\Gamma(A) = \emptyset$. \square

Lemma 2.7. Let (X, τ, \mathcal{I}) be an ideal topological space. If $U \in \tau_{\theta}$, then $U \cap \Gamma(A) = U \cap \Gamma(U \cap A) \subseteq \Gamma(U \cap A)$ for any subset A of X.

Proof. Suppose that $U \in \tau_{\theta}$ and $x \in U \cap \Gamma(A)$. Then $x \in U$ and $x \in \Gamma(A)$. Since $U \in \tau_{\theta}$, then there exists $W \in \tau$ such that $x \in W \subseteq Cl(W) \subseteq U$. Let V be any open set containing x. Then $V \cap W \in \tau(x)$ and $Cl(V \cap W) \cap A \notin \mathcal{I}$ and hence $Cl(V) \cap (U \cap A) \notin \mathcal{I}$. This shows that $x \in \Gamma(U \cap A)$ and hence we obtain $U \cap \Gamma(A) \subseteq \Gamma(U \cap A)$. Moreover, $U \cap \Gamma(A) \subseteq U \cap \Gamma(U \cap A)$ and by Theorem 2.6, $\Gamma(U \cap A) \subseteq \Gamma(A)$ and $U \cap \Gamma(U \cap A) \subseteq U \cap \Gamma(A)$. Therefore, $U \cap \Gamma(A) = U \cap \Gamma(U \cap A)$. \square

Theorem 2.8. Let (X, τ, \mathcal{I}) be an ideal topological space and A, B any subsets of X. Then the following properties hold:

1. $\Gamma(\emptyset) = \emptyset$.

2. $\Gamma(A) \cup \Gamma(B) = \Gamma(A \cup B)$.

Proof. (1) The proof is obvious.

(2) It follows from Theorem 2.6 that $\Gamma(A \cup B) \supseteq \Gamma(A) \cup \Gamma(B)$. To prove the reverse inclusion, let $x \notin \Gamma(A) \cup \Gamma(B)$. Then x belongs neither to $\Gamma(A)$ nor to $\Gamma(B)$. Therefore there exist $U_{x}, V_{x} \in \tau(x)$ such that $Cl(U_{x}) \cap A \in \mathcal{I}$ and
\(Cl(V_x) \cap B \in \mathcal{I} \). Since \(\mathcal{I} \) is additive, \((Cl(U_x) \cap A) \cup (Cl(V_x) \cap B) \in \mathcal{I}\). Moreover, since \(\mathcal{I} \) is hereditary and

\[
(Cl(U_x) \cap A) \cup (Cl(V_x) \cap B) = [(Cl(U_x) \cap A) \cup Cl(V_x)] \cap [(Cl(U_x) \cap A) \cup B] \\
= (Cl(U_x) \cup Cl(V_x)) \cap (A \cup Cl(V_x)) \cap (Cl(U_x) \cup B) \cap (A \cup B) \\
\supseteq Cl(U_x \cap V_x) \cap (A \cup B),
\]

\(Cl(U_x \cap V_x) \cap (A \cup B) \in \mathcal{I} \). Since \(U_x \cap V_x \in \tau(x), x \notin \Gamma(A \cup B) \). Hence \((X \setminus \Gamma(A)) \cap (X \setminus \Gamma(B)) \subseteq X \setminus \Gamma(A \cup B) \) or \(\Gamma(A \cup B) \subseteq \Gamma(A) \cup \Gamma(B) \). Hence we obtain \(\Gamma(A) \cup \Gamma(B) = \Gamma(A \cup B) \).

Lemma 2.9. Let \((X, \tau, \mathcal{I})\) be an ideal topological space and \(A, B\) be subsets of \(X\). Then \(\Gamma(A) - \Gamma(B) = \Gamma(A - B) - \Gamma(B)\).

Proof. We have by Theorem 2.8, \(\Gamma(A) = \Gamma[(A - B) \cup (A \cap B)] = \Gamma(A - B) \cup \Gamma(A \cap B) \subseteq \Gamma(A - B) \cup \Gamma(B)\). Thus \(\Gamma(A) - \Gamma(B) \subseteq \Gamma(A - B) \cup \Gamma(B)\). By Theorem 2.9, \(\Gamma(A - B) \cup \Gamma(B) \subseteq \Gamma(A - B) - \Gamma(B)\). Hence \(\Gamma(A) - \Gamma(B) = \Gamma(A - B) - \Gamma(B)\).

Corollary 2.10. Let \((X, \tau, \mathcal{I})\) be an ideal topological space and \(A, B\) be subsets of \(X\) with \(B \in \mathcal{I}\). Then \(\Gamma(A \cup B) = \Gamma(A) = \Gamma(A - B)\).

Proof. Since \(B \in \mathcal{I}\), by Theorem 2.8, \(\Gamma(B) = \emptyset\). By Lemma 2.8, \(\Gamma(A) = \Gamma(A - B)\) and by Theorem 2.3, \(\Gamma(A \cup B) = \Gamma(A) \cup \Gamma(B) = \Gamma(A)\)

3. Closure compatibility of topological spaces

Definition 3.1. Let \((X, \tau, \mathcal{I})\) be an ideal topological space. We say the \(\tau\) is compatible with the ideal \(\mathcal{I}\), denoted \(\tau \sim \mathcal{I}\), if the following holds for every \(A \subseteq X\), if for every \(x \in A\) there exists \(U \in \tau(x)\) such that \(U \cap A \in \mathcal{I}\), then \(A \in \mathcal{I}\).

Definition 3.2. Let \((X, \tau, \mathcal{I})\) be an ideal topological space. We say the \(\tau\) is closure compatible with the ideal \(\mathcal{I}\), denoted \(\tau \sim_{\text{cl}} \mathcal{I}\), if the following holds for every \(A \subseteq X\), if for every \(x \in A\) there exists \(U \in \tau(x)\) such that \(Cl(U) \cap A \in \mathcal{I}\), then \(A \in \mathcal{I}\).

Remark 3.3. If \(\tau\) is compatible with \(\mathcal{I}\), then \(\tau\) is closure compatible with \(\mathcal{I}\).

Theorem 3.4. Let \((X, \tau, \mathcal{I})\) be an ideal topological space, the following properties are equivalent:

1. \(\tau \sim_{\text{cl}} \mathcal{I}\);
2. If a subset \(A\) of \(X\) has a cover of open sets each of whose closure intersection with \(A\) is in \(\mathcal{I}\), then \(A \in \mathcal{I}\);
3. For every \(A \subseteq X\), \(A \cap \Gamma(A) = \emptyset\) implies that \(A \in \mathcal{I}\);
4. For every \(A \subseteq X \), \(A \setminus \Gamma(A) \in \mathcal{I} \);

5. For every \(A \subseteq X \), if \(A \) contains no nonempty subset \(B \) with \(B \subseteq \Gamma(B) \), then \(A \in \mathcal{I} \).

Proof. (1) \(\Rightarrow \) (2): The proof is obvious.

(2) \(\Rightarrow \) (3): Let \(A \subseteq X \) and \(x \in A \). Then \(x \notin \Gamma(A) \) and there exists \(V_x \in \tau(x) \) such that \(Cl(V_x) \cap A \in \mathcal{I} \). Therefore, we have \(A \subseteq \bigcup \{ V_x : x \in A \} \) and \(V_x \in \tau(x) \) and by (2), \(A \in \mathcal{I} \).

(3) \(\Rightarrow \) (4): For any \(A \subseteq X \), \(A - \Gamma(A) \subseteq A \) and \((A - \Gamma(A)) \cap \Gamma(A - \Gamma(A)) \subseteq (A - \Gamma(A)) \cap \Gamma(A) = \emptyset \). By (3), \(A - \Gamma(A) \in \mathcal{I} \).

(4) \(\Rightarrow \) (5): By (4), for every \(A \subseteq X \), \(A - \Gamma(A) \in \mathcal{I} \). Let \(A - \Gamma(A) = J \in \mathcal{I} \), then \(A = J \cup (A \cap \Gamma(A)) \) and by Theorem \ref{thm:local_closure_functions}(2) and Theorem \ref{thm:local_closure_functions}(5), \(\Gamma(A) = \Gamma(J) \cup \Gamma(A \cap \Gamma(A)) = \Gamma(A \cap \Gamma(A)) \). Therefore, we have \(A \cap \Gamma(A) = A \cap (A \cap \Gamma(A)) \subseteq (A \cap \Gamma(A)) \) and \(A \cap \Gamma(A) \subseteq A \). By the assumption \(A \cap \Gamma(A) = \emptyset \) and hence \(A = A - \Gamma(A) \in \mathcal{I} \).

(5) \(\Rightarrow \) (1): Let \(A \subseteq X \) and assume that for every \(x \in A \), there exists \(U \in \tau(x) \) such that \(Cl(U) \cap A \in \mathcal{I} \). Then \(A \cap \Gamma(A) = \emptyset \). Suppose that \(A \) contains \(B \) such that \(B \subseteq \Gamma(B) \). Then \(B = B \setminus \Gamma(B) \subseteq A \cap \Gamma(A) = \emptyset \). Therefore, \(A \) contains no nonempty subset \(B \) with \(B \subseteq \Gamma(B) \). Hence \(A \in \mathcal{I} \). \(\square \)

Theorem 3.5. Let \((X, \tau, \mathcal{I})\) be an ideal topological space. If \(\tau \) is closure compatible with \(\mathcal{I} \), then the following equivalent properties hold:

1. For every \(A \subseteq X \), \(A \cap \Gamma(A) = \emptyset \) implies that \(\Gamma(A) = \emptyset \);

2. For every \(A \subseteq X \), \(\Gamma(A - \Gamma(A)) = \emptyset \);

3. For every \(A \subseteq X \), \(\Gamma(A \cap \Gamma(A)) = \Gamma(A) \).

Proof. First, we show that (1) holds if \(\tau \) is closure compatible with \(\mathcal{I} \). Let \(A \) be any subset of \(X \) and \(A \cap \Gamma(A) = \emptyset \). By Theorem \ref{thm:local_closure_functions}, \(A \in \mathcal{I} \) and by Theorem \ref{thm:local_closure_functions}(5), \(\Gamma(A) = \emptyset \).

(1) \(\Rightarrow \) (2): Assume that for every \(A \subseteq X \), \(A \cap \Gamma(A) = \emptyset \) implies that \(\Gamma(A) = \emptyset \). Let \(B = A - \Gamma(A) \), then

\[
B \cap \Gamma(B) = (A - \Gamma(A)) \cap \Gamma(A - \Gamma(A)) = (A \cap (X - \Gamma(A))) \cap \Gamma(A \cap (X - \Gamma(A))) \subseteq [A \cap (X - \Gamma(A))] \cap [\Gamma(A) \cap (\Gamma(X - \Gamma(A)))] = \emptyset.
\]

By (1), we have \(\Gamma(B) = \emptyset \). Hence \(\Gamma(A - \Gamma(A)) = \emptyset \).

(2) \(\Rightarrow \) (3): Assume for every \(A \subseteq X \), \(\Gamma(A - \Gamma(A)) = \emptyset \).

\[
A = (A - \Gamma(A)) \cup (A \cap \Gamma(A)) \quad \Gamma(A) = \Gamma[(A - \Gamma(A)) \cup (A \cap \Gamma(A))] = \Gamma(A - \Gamma(A)) \cup \Gamma(A \cap \Gamma(A)) = \Gamma(A \cap \Gamma(A)).
\]

(3) \(\Rightarrow \) (1): Assume for every \(A \subseteq X \), \(A \cap \Gamma(A) = \emptyset \) and \(\Gamma(A \cap \Gamma(A)) = \Gamma(A) \). This implies that \(\emptyset = \Gamma(\emptyset) = \Gamma(A) \). \(\square \)
Theorem 3.6. Let \((X, \tau, \mathcal{I})\) be an ideal topological space, then the following properties are equivalent:

1. \(\text{Cl}(\tau) \cap \mathcal{I} = \emptyset\), where \(\text{Cl}(\tau) = \{\text{Cl}(V) : V \in \tau\}\);
2. If \(I \in \mathcal{I}\), then \(\text{Int}_{\theta}(I) = \emptyset\);
3. For every clopen \(G\), \(G \subseteq \Gamma(G)\);
4. \(X = \Gamma(X)\).

Proof. \((1) \Rightarrow (2)\): Let \(\text{Cl}(\tau) \cap \mathcal{I} = \emptyset\) and \(I \in \mathcal{I}\). Suppose that \(x \in \text{Int}_{\theta}(I)\). Then there exists \(U \in \tau\) such that \(x \in U \subseteq \text{Cl}(U) \subseteq I\). Since \(I \in \mathcal{I}\) and hence \(\emptyset \neq \{x\} \subseteq \text{Cl}(U) \in \text{Cl}(\tau) \cap \mathcal{I}\). This is contrary to \(\text{Cl}(\tau) \cap \mathcal{I} = \emptyset\). Therefore, \(\text{Int}_{\theta}(I) = \emptyset\).

\((2) \Rightarrow (3)\): Let \(x \in G\). Assume \(x \notin \Gamma(G)\), then there exists \(U_x \in \tau(x)\) such that \(G \cap \text{Cl}(U_x) \in \mathcal{I}\) and hence \(G \cap U_x \in \mathcal{I}\). Since \(G\) is clopen, by (2) and Lemma 3.5, \(x \in G \cap U_x = \text{Int}(G \cap U_x) \subseteq \text{Int}(G \cap \text{Cl}(U_x)) = \text{Int}_{\theta}(G \cap \text{Cl}(U_x)) = \emptyset\). This is a contradiction. Hence \(x \in \Gamma(G)\) and \(G \subseteq \Gamma(G)\).

\((3) \Rightarrow (4)\): Since \(X\) is clopen, then \(X = \Gamma(X)\).

\((4) \Rightarrow (1)\): \(X = \Gamma(X) = \{x \in X : \text{Cl}(U) \cap X = \text{Cl}(U) \notin \mathcal{I} \text{ for each open set } U \text{ containing } x\}\). Hence \(\text{Cl}(\tau) \cap \mathcal{I} = \emptyset\).

\(\square\)

Theorem 3.7. Let \((X, \tau, \mathcal{I})\) be an ideal topological space, \(\tau\) be closure compatible with \(\mathcal{I}\). Then for every \(G \in \tau_{\theta}\) and any subset \(A\) of \(X\), \(\text{Cl}(\Gamma(G \cap A)) = \Gamma(G \cap A) \subseteq \Gamma(G \cap \Gamma(A)) \subseteq \text{Cl}_{\theta}(G \cap \Gamma(A))\).

Proof. By Theorem 3.3 and Theorem 2.0, we have \(\Gamma(G \cap A) = \Gamma((G \cap A) \cap \Gamma(G \cap A)) \subseteq \Gamma(G \cap \Gamma(A))\). Moreover, by Theorem 2.0, \(\text{Cl}(\Gamma(G \cap A)) = \Gamma(G \cap A) \subseteq \Gamma(G \cap \Gamma(A)) \subseteq \text{Cl}_{\theta}(G \cap \Gamma(A))\).

\(\square\)

4. \(\Psi_{\Gamma}\)-operator

Definition 4.1. Let \((X, \tau, \mathcal{I})\) be an ideal topological space. An operator \(\Psi_{\Gamma} : \mathcal{P}(X) \to \tau\) is defined as follows: for every \(A \subseteq X\), \(\Psi_{\Gamma}(A) = \{x \in X : \text{there exists } U \in \tau(x) \text{ such that } \text{Cl}(U) - A \in \mathcal{I}\}\) and observe that \(\Psi_{\Gamma}(A) = X - \Gamma(X - A)\).

Several basic facts concerning the behavior of the operator \(\Psi_{\Gamma}\) are included in the following theorem.

Theorem 4.2. Let \((X, \tau, \mathcal{I})\) be an ideal topological space. Then the following properties hold:

1. If \(A \subseteq X\), then \(\Psi_{\Gamma}(A)\) is open.
2. If \(A \subseteq B\), then \(\Psi_{\Gamma}(A) \subseteq \Psi_{\Gamma}(B)\).
3. If \(A, B \in \mathcal{P}(X)\), then \(\Psi_{\Gamma}(A \cap B) = \Psi_{\Gamma}(A) \cap \Psi_{\Gamma}(B)\).
4. If \(A \subseteq X\), then \(\Psi_{\Gamma}(A) = \Psi_{\Gamma}(\Psi_{\Gamma}(A))\) if and only if \(\Gamma(X - A) = \Gamma(\Gamma(X - A))\).
5. If \(A \in \mathcal{I} \), then \(\Psi_\Gamma(A) = X - \Gamma(X) \).

6. If \(A \subseteq X \), \(I \in \mathcal{I} \), then \(\Psi_\Gamma(A - I) = \Psi_\Gamma(A) \).

7. If \(A \subseteq X \), \(I \in \mathcal{I} \), then \(\Psi_\Gamma(A \cup I) = \Psi_\Gamma(A) \).

8. If \((A - B) \cup (B - A) \in \mathcal{I} \), then \(\Psi_\Gamma(A) = \Psi_\Gamma(B) \).

Proof. (1) This follows from Theorem 2.6 (3).

(2) This follows from Theorem 2.6 (1).

(3)

\[
\Psi_\Gamma(A \cap B) = X - \Gamma(X - (A \cap B))
\]

\[
= X - \Gamma((X - A) \cup (X - B))
\]

\[
= X - \Gamma(X - A) \cup \Gamma(X - B)
\]

\[
= [X - \Gamma(X - A) \cap [X - \Gamma(X - B)]
\]

\[
= \Psi_\Gamma(A) \cap \Psi_\Gamma(B).
\]

(4) This follows from the facts:

1. \(\Psi_\Gamma(A) = X - \Gamma(X - A) \).

2. \(\Psi_\Gamma(\Psi_\Gamma(A)) = X - \Gamma(X - (X - \Gamma(X - A))) = X - \Gamma(\Gamma(X - A)) \).

(5) By Corollary 2.10 we obtain that \(\Gamma(X - A) = \Gamma(X) \) if \(A \in \mathcal{I} \).

(6) This follows from Corollary 2.10 and \(\Psi_\Gamma(A - I) = X - \Gamma[X - (A - I)] = X - \Gamma[(X - A) \cup I] = X - \Gamma(X - A) = \Psi_\Gamma(A) \).

(7) This follows from Corollary 2.10 and \(\Psi_\Gamma(A \cup I) = X - \Gamma[X - (A \cup I)] = X - \Gamma[(X - A) - I] = X - \Gamma(X - A) = \Psi_\Gamma(A) \).

(8) Assume \((A - B) \cup (B - A) \in \mathcal{I} \). Let \(A - B = I \) and \(B - A = J \). Observe that \(I, J \in \mathcal{I} \) by heredity. Also observe that \(B = (A - I) \cup J \). Thus \(\Psi_\Gamma(A) = \Psi_\Gamma(A - I) = \Psi[(A - I) \cup J] = \Psi_\Gamma(B) \) by (6) and (7). \(\square \)

Corollary 4.3. Let \((X, \tau, \mathcal{I})\) be an ideal topological space. Then \(U \subseteq \Psi_\Gamma(U) \) for every \(\theta \)-open set \(U \subseteq X \).

Proof. We know that \(\Psi_\Gamma(U) = X - \Gamma(X - U) \). Now \(\Gamma(X - U) \subseteq Cl_\theta(X - U) = X - U \), since \(X - U \) is \(\theta \)-closed. Therefore, \(U = X - (X - U) \subseteq X - \Gamma(X - U) = \Psi_\Gamma(U) \). \(\square \)

Now we give an example of a set \(A \) which is not \(\theta \)-open but satisfies \(A \subseteq \Psi_\Gamma(A) \).

Example 4.4. Let \(X = \{a, b, c, d\} \), \(\tau = \{\emptyset, X, \{a, c\}, \{d\}, \{a, c, d\}\} \), and \(\mathcal{I} = \{\emptyset, \{b\}, \{c\}, \{b, c\}\} \). Let \(A = \{a\} \). Then \(\Psi_\Gamma(\{a\}) = X - \Gamma(X - \{a\}) = X - \Gamma(\{b, c, d\}) = X - \{b, d\} = \{a, c\} \). Therefore, \(A \subseteq \Psi_\Gamma(A) \), but \(A \) is not \(\theta \)-open.

Example 4.5. Let \((X, \tau)\) be the real numbers with the left-ray topology, i.e. \(\tau = \{(-\infty, a) : a \in X\} \cup \{X, \emptyset\} \). Let \(\mathcal{I}_f \) be the ideal of all finite subsets of \(X \). Let \(A = X - \{0, 1\} \). Then \(\Psi_\Gamma(\{A\}) = X - \Gamma(\{0, 1\}) = X \). Therefore, \(A \subseteq \Psi_\Gamma(A) \), but \(A \) is not \(\theta \)-open.
\textbf{Theorem 4.6.} Let \((X, \tau, I)\) be an ideal topological space and \(A \subseteq X\). Then the following properties hold:

1. \(\Psi_\Gamma(A) = \bigcup \{U \in \tau : \text{Cl}(U) - A \in I\}\).
2. \(\Psi_\Gamma(A) \supseteq \bigcup \{U \in \tau : (\text{Cl}(U) - A) \cup (A - \text{Cl}(U)) \in I\}\).

\textit{Proof.} (1) This follows immediately from the definition of \(\Psi_\Gamma\)-operator.
(2) Since \(I\) is heredity, it is obvious that \(\bigcup \{U \in \tau : (\text{Cl}(U) - A) \cup (A - \text{Cl}(U)) \in I\} \subseteq \bigcup \{U \in \tau : \text{Cl}(U) - A \in I\} = \Psi_\Gamma(A)\) for every \(A \subseteq X\). \(\square\)

\textbf{Theorem 4.7.} Let \((X, \tau, I)\) be an ideal topological space. If \(\sigma = \{A \subseteq X : A \subseteq \Psi_\Gamma(A)\}\). Then \(\sigma\) is a topology for \(X\).

\textit{Proof.} Let \(\sigma = \{A \subseteq X : A \subseteq \Psi_\Gamma(A)\}\). Since \(\phi \in I\), by Theorem 4.5 \(\Gamma(\phi) = \phi\) and \(\Psi_\Gamma(X) = X - \Gamma(X - X) = X - \Gamma(\phi) = X\). Moreover, \(\Psi_\Gamma(\phi) = X - \Gamma(X - \phi) = X - X = \phi\). Therefore, we obtain that \(\phi \subseteq \Psi_\Gamma(\phi)\) and \(X \subseteq \Psi_\Gamma(X) = X\), and thus \(\phi\) and \(X \in \sigma\). Now if \(A, B \in \sigma\), then by Theorem 4.6 \(A \cap B \subseteq \Psi_\Gamma(A) \cap \Psi_\Gamma(B) = \Psi_\Gamma(A \cap B)\) which implies that \(A \cap B \in \sigma\). If \(\{A_\alpha : \alpha \in \Delta\} \subseteq \sigma\), then \(A_\alpha \subseteq \Psi_\Gamma(A_\alpha) \subseteq \Psi_\Gamma(\bigcup A_\alpha)\). This shows that \(\sigma\) is a topology. \(\square\)

\textbf{Lemma 4.8.} If either \(A \in \tau\) or \(B \in \tau\), then \(\text{Int}(\text{Cl}(A \cap B)) = \text{Int}(\text{Cl}(A)) \cap \text{Int}(\text{Cl}(B))\).

\textit{Proof.} This is an immediate consequence of Lemma 3.5 of [3]. \(\square\)

\textbf{Theorem 4.9.} Let \(\sigma_0 = \{A \subseteq X : A \subseteq \text{Int}(\text{Cl}(\Psi_\Gamma(A)))\}\), then \(\sigma_0\) is a topology for \(X\).

\textit{Proof.} By Theorem 4.5, for any subset \(A\) of \(X\), \(\Psi_\Gamma(A)\) is open and \(\sigma \subseteq \sigma_0\). Therefore, \(\emptyset, X \in \sigma_0\). Let \(A, B \in \sigma_0\). Then by Lemma 4.5 and Theorem 4.7, we have \(A \cap B \subseteq \text{Int}(\text{Cl}(\Psi_\Gamma(A))) \cap \text{Int}(\text{Cl}(\Psi_\Gamma(B))) = \text{Int}(\text{Cl}(\Psi_\Gamma(A) \cap \Psi_\Gamma(B))) = \text{Int}(\text{Cl}(\Psi_\Gamma(A \cap B)))\). Therefore, \(A \cap B \in \sigma_0\). Let \(A_\alpha \in \sigma_0\) for each \(\alpha \in \Delta\). By Theorem 4.7, for each \(\alpha \in \Delta\), \(A_\alpha \subseteq \text{Int}(\text{Cl}(\Psi_\Gamma(A_\alpha))) \subseteq \text{Int}(\text{Cl}(\Psi_\Gamma(\bigcup A_\alpha)))\) and hence \(\bigcup A_\alpha \subseteq \text{Int}(\text{Cl}(\Psi_\Gamma(\bigcup A_\alpha)))\). Hence \(\bigcup A_\alpha \in \sigma_0\). This shows that \(\sigma_0\) is a topology for \(X\). \(\square\)

By Theorem 4.5 and Corollary 4.8 the following relations holds:

\[\theta\text{-open} \longrightarrow \text{open} \]
\[\sigma\text{-open} \longrightarrow \sigma_0\text{-open}\]

\textbf{Remark 4.10.} 1. In Example 4.7, \(A\) is \(\sigma\)-open but it is not open. Therefore, every \(\sigma_0\)-open set is not open.
2. Let \(X = \{a, b, c\} \) with \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\} \) and \(\mathcal{I} = \{\phi, \{a\}\} \) be an ideal on \(X \). We observe that \(\{a\} \) is open but it is not \(\sigma_0 \)-open sets, since \(\Psi_\Gamma(\{a\}) = X - \Gamma(\{b, c\}) = X - X = \phi \). Also, \(\{c\} \) is not open but it is \(\sigma \)-open set, since \(\Psi_\Gamma(\{c\}) = X - \Gamma(\{a, b\}) = X - \{b\} = \{a, c\} \).

3. **Question:** Is there an example which shows that \(\sigma \subsetneq \sigma_0 \)?

Theorem 4.11. Let \((X, \tau, \mathcal{I}) \) be an ideal topological space. Then \(\tau \sim_\Gamma \mathcal{I} \) if and only if \(\Psi_\Gamma(A) - A \in \mathcal{I} \) for every \(A \subseteq X \).

Proof. **Necessity.** Assume \(\tau \sim_\Gamma \mathcal{I} \) and let \(A \subseteq X \). Observe that \(x \in \Psi_\Gamma(A) - A \) if and only if \(x \not\in A \) and \(x \not\in \Gamma(X - A) \) if and only if \(x \not\in A \) and there exists \(U_x \in \tau(x) \) such that \(Cl(U_x) - A \in \mathcal{I} \) if and only if \(U_x \in \tau(x) \) such that \(x \in Cl(U_x) - A \in \mathcal{I} \). Now, for each \(x \in \Psi_\Gamma(A) - A \) and \(U_x \in \tau(x) \), \(Cl(U_x) \cap (\Psi_\Gamma(A) - A) \in \mathcal{I} \) by heredity and hence \(\Psi_\Gamma(A) - A \in \mathcal{I} \) by assumption that \(\tau \sim_\Gamma \mathcal{I} \).

Sufficiency. Let \(A \subseteq X \) and assume that for each \(x \in A \) there exists \(U_x \in \tau(x) \) such that \(Cl(U_x) \cap A \in \mathcal{I} \). Observe that \(\Psi_\Gamma(X - A) - (X - A) = A - \Gamma(A) = \{x : \text{there exists } U_x \in \tau(x) \text{ such that } x \in Cl(U_x) \cap A \in \mathcal{I}\} \). Thus we have \(A \subseteq \Psi_\Gamma(X - A) - (X - A) \in \mathcal{I} \) and hence \(A \in \mathcal{I} \) by heredity of \(\mathcal{I} \).

Proposition 4.12. Let \((X, \tau, \mathcal{I}) \) be an ideal topological space with \(\tau \sim_\Gamma \mathcal{I} \), \(A \subseteq X \). If \(N \) is a nonempty open subset of \(\Gamma(A) \cap \Psi_\Gamma(A) \), then \(N - A \in \mathcal{I} \) and \(Cl(N) \cap A \not\in \mathcal{I} \).

Proof. If \(N \subseteq \Gamma(A) \cap \Psi_\Gamma(A) \), then \(N - A \subseteq \Psi_\Gamma(A) - A \in \mathcal{I} \) by Theorem 4.11 and hence \(N - A \in \mathcal{I} \) by heredity. Since \(N \subseteq \tau - \{\phi\} \) and \(N \subseteq \Gamma(A) \), we have \(Cl(N) \cap A \not\in \mathcal{I} \) by the definition of \(\Gamma(A) \).

In [3], Newcomb defines \(A = B \mod \mathcal{I} \) if \((A - B) \cup (B - A) \in \mathcal{I} \) and observes that \(= \mod \mathcal{I} \) is an equivalence relation. By Theorem 1.11, we have that if \(A = B \mod \mathcal{I} \), then \(\Psi_\Gamma(A) = \Psi_\Gamma(B) \).

Definition 4.13. Let \((X, \tau, \mathcal{I}) \) be an ideal topological space. A subset \(A \) of \(X \) is called a Baire set with respect to \(\tau \) and \(\mathcal{I} \), denoted \(A \in \mathcal{B}_r(X, \tau, \mathcal{I}) \), if there exists a \(\theta \)-open set \(U \) such that \(A = U \mod \mathcal{I} \).

Lemma 4.14. Let \((X, \tau, \mathcal{I}) \) be an ideal topological space with \(\tau \sim_\Gamma \mathcal{I} \). If \(U, V \in \tau_\theta \) and \(\Psi_\Gamma(U) = \Psi_\Gamma(V) \), then \(U = V \mod \mathcal{I} \).

Proof. Since \(U \in \tau_\theta \), by Corollary 1.13 we have \(U \subseteq \Psi_\Gamma(U) \) and hence \(U - V \subseteq \Psi_\Gamma(U) - V = \Psi_\Gamma(V) - V \in \mathcal{I} \) by Theorem 1.11. Therefore, \(U - V \in \mathcal{I} \). Similarly, \(V - U \in \mathcal{I} \). Now, \((U - V) \cup (V - U) \in \mathcal{I} \) by additivity. Hence \(U = V \mod \mathcal{I} \).

Theorem 4.15. Let \((X, \tau, \mathcal{I}) \) be an ideal topological space with \(\tau \sim_\Gamma \mathcal{I} \). If \(A, B \in \mathcal{B}_r(X, \tau, \mathcal{I}) \), and \(\Psi_\Gamma(A) = \Psi_\Gamma(B) \), then \(A = B \mod \mathcal{I} \).
Proof. Let $U, V \in \tau_0$ be such that $A = U \bmod I$ and $B = V \bmod I$. Now \(\Psi_\Gamma(A) = \Psi_\Gamma(U) \) and \(\Psi_\Gamma(B) = \Psi_\Gamma(V) \) by Theorem 4.14(8). Since \(\Psi_\Gamma(A) = \Psi_\Gamma(B) \) implies that \(\Psi_\Gamma(U) = \Psi_\Gamma(V) \) and hence $U = V \bmod I$ by Lemma 4.14. Hence $A = B \bmod I$ by transitivity. \(\square \)

Proposition 4.16. Let \((X, \tau, I)\) be an ideal topological space.

1. If $B \in \mathcal{B}_r(X, \tau, I) - I$, then there exists $A \in \tau_0 - \{\phi\}$ such that $B = A \bmod I$.

2. Let $\text{Cl}(\tau) \cap I = \phi$, then $B \in \mathcal{B}_r(X, \tau, I) - I$ if and only if there exists $A \in \tau_0 - \{\phi\}$ such that $B = A \bmod I$.

Proof. (1) Assume $B \in \mathcal{B}_r(X, \tau, I) - I$, then $B \in \mathcal{B}_r(X, \tau, I)$. Hence there exists $A \in \tau_0$ such that $B = A \bmod I$. If $A = \phi$, then we have $B = \phi \bmod I$. This implies that $B \in I$ which is a contradiction.

(2) Assume there exists $A \in \tau_0 - \{\phi\}$ such that $B = A \bmod I$, hence by Definition 4.14, $B \in \mathcal{B}_r(X, \tau, I)$. Then $A = (B - J) \cup I$, where $J = B - A, I = A - B \in I$. If $B \in I$, then $A \in I$ by heredity and additivity. Since $A \in \tau_0 - \{\phi\}, A \neq \phi$ and there exists $U \in \tau$ such that $\phi \neq U \subseteq \text{Cl}(U) \subseteq A$. Since $A \in I$, $\text{Cl}(U) \in I$ and hence $\text{Cl}(U) \in \text{Cl}(\tau) \cap I$. This contradicts that $\text{Cl}(\tau) \cap I = \phi$. \(\square \)

Proposition 4.17. Let \((X, \tau, I)\) be an ideal topological space with $\tau \cap I = \phi$. If $B \in \mathcal{B}_r(X, \tau, I) - I$, then $\Psi_\Gamma(B) \cap \text{Int}_\theta(\Gamma(B)) \neq \phi$.

Proof. Assume $B \in \mathcal{B}_r(X, \tau, I) - I$, then by Proposition 4.14(1), there exists $A \in \tau_0 - \{\phi\}$ such that $B = A \bmod I$. By Theorem 4.14 and Lemma 4.14, $A = A \cap X = A \cap \Gamma(X) \subseteq \Gamma(A) \cap X = \Gamma(A)$. This implies that $\phi \neq A \subseteq \Gamma(A) = \Gamma((B - J) \cup I) = \Gamma(B)$, where $J = B - A, I = A - B \in I$ by Corollary 4.14. Since $A \in \tau_0, A \subseteq \text{Int}_\theta(\Gamma(B))$. Also, $\phi \neq A \subseteq \Psi_\Gamma(A) = \Psi_\Gamma(B)$ by Corollary 4.14 and Theorem 4.14(8). Consequently, we obtain $A \subseteq \Psi_\Gamma(B) \cap \text{Int}_\theta(\Gamma(B))$. \(\square \)

Given an ideal topological space \((X, \tau, I)\), let $U(X, \tau, I)$ denote \(\{A \subseteq X : \text{there exists } B \in \mathcal{B}_r(X, \tau, I) - I \text{ such that } B \subseteq A\} \).

Proposition 4.18. Let \((X, \tau, I)\) be an ideal topological space with $\tau \cap I = \phi$. If $\tau = \tau_0$, then the following statements are equivalent:

1. $A \in U(X, \tau, I)$;
2. $\Psi_\Gamma(A) \cap \text{Int}_\theta(\Gamma(A)) \neq \phi$;
3. $\Psi_\Gamma(A) \cap \Gamma(A) \neq \phi$;
4. $\Psi_\Gamma(A) \neq \phi$;
5. $\text{Int}_\theta(A) \neq \phi$;
6. There exists $N \in \tau - \{\phi\}$ such that $N - A \in I$ and $N \cap A \notin I$.

Local closure functions in ideal topological spaces

Proof. (1) ⇒ (2): Let \(B \in \mathcal{B}_r(X, \tau, \mathcal{I}) - \mathcal{I} \) such that \(B \subseteq A \). Then \(\text{Int}_\theta(\Gamma(B)) \subseteq \text{Int}_\theta(\Gamma(A)) \) and \(\Psi_\Gamma(B) \subseteq \Psi_\Gamma(A) \) and hence \(\text{Int}_\theta(\Gamma(B)) \cap \Psi_\Gamma(B) \subseteq \text{Int}_\theta(\Gamma(A)) \cap \Psi_\Gamma(A) \). By Proposition, we have \(\Psi_\Gamma(A) \cap \text{Int}_\theta(\Gamma(A)) \neq \phi \).

(2) ⇒ (3): The proof is obvious.

(3) ⇒ (4): The proof is obvious.

(4) ⇒ (5): If \(\Psi_\Gamma(A) \neq \phi \), then there exists \(U \in \tau - \{\phi\} \) such that \(U - A \in \mathcal{I} \). Since \(U \notin \mathcal{I} \) and \(U = (U - A) \cup (U \cap A) \), we have \(U \cap A \notin \mathcal{I} \). By Theorem, \(\phi \neq (U \cap A) \subseteq \Psi_\Gamma(U) \cap A = \Psi_\Gamma((U - A) \cup (U \cap A)) \cap A = \Psi_\Gamma(U \cap A) \cap A \subseteq \Psi_\Gamma(A) \cap A = \text{Int}_\theta(A) \). Hence \(\text{Int}_\theta(A) \neq \phi \).

(5) ⇒ (6): If \(\text{Int}_\theta(A) \neq \phi \), then by Theorem 3.1 there exists \(N \in \tau - \{\phi\} \) and \(I \in \mathcal{I} \) such that \(\phi \neq N - I \subseteq A \). We have \(N - A \in \mathcal{I} \), \(N = (N - A) \cup (N \cap A) \) and \(N \notin \mathcal{I} \). This implies that \(N \cap A \notin \mathcal{I} \).

(6) ⇒ (1): Let \(B = N \cap A \notin \mathcal{I} \) with \(N \in \tau_\theta - \{\phi\} \) and \(N - A \in \mathcal{I} \). Then \(B \in \mathcal{B}_r(X, \tau, \mathcal{I}) - \mathcal{I} \) since \(B \notin \mathcal{I} \) and \((B - N) \cup (N - B) = N - A \in \mathcal{I} \).

\[\text{Theorem 4.19.} \] Let \((X, \tau, \mathcal{I}) \) be an ideal topological space with \(\tau \sim_\Gamma \mathcal{I} \), where \(Cl(\tau) \cap \mathcal{I} = \phi \). Then for \(A \subseteq X, \Psi_\Gamma(A) \subseteq \Gamma(A) \).

Proof. Suppose \(x \in \Psi_\Gamma(A) \) and \(x \notin \Gamma(A) \). Then there exists a nonempty neighborhood \(U_x \in \tau(x) \) such that \(Cl(U_x) \cap A \in \mathcal{I} \). Since \(x \notin \Gamma(A) \), by Theorem, \(x \notin \{ U \in \tau : Cl(U) \cap A \in \mathcal{I} \} \) and there exists \(V \in \tau(x) \) and \(Cl(V) - A \in \mathcal{I} \). Now we have \(U_x \cap V \in \tau(x) \), \(Cl(U_x \cap V) \cap A \in \mathcal{I} \) and \(Cl(U_x \cap V) - A \in \mathcal{I} \) by heredity. Hence by finite additivity we have \(Cl(U_x \cap V) \cap A \cup (Cl(U_x \cap V) - A) = Cl(U_x \cap V) \in \mathcal{I} \). Since \((U_x \cap V) \in \tau(x) \), this is contrary to \(Cl(\tau) \cap \mathcal{I} = \phi \). Therefore, \(x \in \Gamma(A) \). This implies that \(\Psi_\Gamma(A) \subseteq \Gamma(A) \).

Acknowledgement

The authors wish to thank the referee for useful comments and suggestions.

References

Received by the editors March 1, 2013