ON THE CRITICAL GROUP OF A FAMILY OF GRAPHS

Zahid Raza

Abstract. The critical group is a subtle isomorphism invariant of the graph and closely connected with the graph Laplacian matrix. In this paper, the abstract structure of the critical group of a family of graphs H_n, $n \geq 3$ is determined.

AMS Mathematics Subject Classification (2010): 05C25, 15A18, 05C50

Key words and phrases: Graph, Laplacian matrix, critical group, invariant factor, Smith normal form, tree number

1. Introduction

Let G be a finite multi-graph with n vertices. Let $A(G)$ and $D(G)$ be the adjacency and degree matrices of the graph G. Then, the Laplacian matrix $L(G)$ is defined as $L(G) = D(G) - A(G)$. The critical group of a graph G is closely related with the Laplacian matrix $L(G)$ as follows: thinking of $L(G)$ as a linear map $\mathbb{Z}^n \rightarrow \mathbb{Z}^n$, its cokernel has the form $\text{coker}(G) = \frac{\mathbb{Z}^n}{L(G)\mathbb{Z}^n} \cong \mathbb{Z} \oplus K(G)$, where $K(G)$ is the critical group on G in the sense of isomorphism and the order of the critical group of a graph is equal to the number of spanning trees of the graph $[3,4,10,11,14]$.

Let v_r be a vertex (called a root) of a graph G with n vertices. The critical group $K(G)$ of G is also the quotient group \mathbb{Z}^n by the subgroup spanned by the n generators $\Delta_1, \ldots, \Delta_{r-1}, x_r, \Delta_{r+1}, \ldots, \Delta_n$, where $\Delta_i = d_i x_i - \sum_{v_j \text{ adjacent to } v_i} a_{ij} x_j$ and $x_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{Z}^n$, whose unique nonzero entry 1 is in the position i, where $i = 1, 2, \ldots, n$. That is $K(G) = \text{span}(\Delta_1, \ldots, \Delta_{r-1}, x_r, \Delta_{r+1}, \ldots, \Delta_n)$. Notice that $K(G)$ is independent of the choice of v_r; for more details see $[8]$.

The explicit determination of the structure of $K(G)$ in a given family of graphs is not always easy, and a series of paper whose goal is to explicitly determine the structure of the group $K(G)$ has appeared in the last ten year, see for example $[1,2,3,4,5,6,13,15,20]$.

We construct the family of graphs H_n by considering a cycle $C_{6n} : v_0, v_1, v_2, v_3, \ldots, v_{6n-1}, v_0$, where $n \geq 3$ and a new vertex v adjacent to n vertices $v_0, v_3, v_6, v_9, \ldots, v_{6n-2}$ of C_{6n}. This graph has order $6n + 1$ and size $7n$. The aim of this paper is to compute the structure of the critical group of this family of graphs H_n, $n \geq 2$ by determine its Smith normal form.
2. System of relations for the cokernel of the Laplacian of H_n

In this section, we will first show that there are at most two generators for the critical group $K(H_n)$ of the graph H_n and reduce the relation matrix to the special matrix B_n. Then, we will give some properties of the sequences concerning the entries of this matrix B_n.

Now, we work on the system of relations of the cokernel of the Laplacian of H_n. Let $x_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{Z}^{6n}$, whose unique nonzero 1 is in the position corresponding to the vertex v_i. Here we have chosen the vertex v as the root, such that $x_v = 0$. The relations of $\text{coker} L(H_n)$ give rise to the following system of equations:

\begin{align}
3x_{i-1} - x_i - x_{i-2} &= 0; \quad i \equiv 2 \pmod{6} \\
2x_{i-1} - x_i - x_{i-2} &= 0; \quad \text{otherwise}
\end{align}

Lemma 2.1. There are two sequences (a_i) and (b_i) of integral numbers such that

\begin{equation}
 x_i = a_i x_2 - b_i x_1, \quad 3 \leq i \leq 6n.
\end{equation}

Moreover, the sequences have the following recurrence relations,

\[
\begin{cases}
 a_i = 3a_{i-1} - a_{i-2}, & i \equiv 2 \pmod{6} \\
 a_i = 2a_{i-1} - a_{i-2}, & \text{otherwise} \\
 b_i = 3b_{i-1} - b_{i-2}, & i \equiv 2 \pmod{6} \\
 b_i = 2b_{i-1} - b_{i-2}, & i \equiv 0, 3, 4, 5 \pmod{6} \\
 b_i = b_{i-1}, & i \equiv 1 \pmod{6}
\end{cases}
\]

Proof. We know from the system of equations (2.1 & 2.2) that the group $K(H_n)$ has at most 2 generators, i.e., each x_i can be expressed in terms of x_2 and x_1. So, there are at least $3n - 2$ diagonal entries of Smith normal form of $L(H_n)$ that are equal to 1, however, the remaining invariant factors of $\text{coker}(H_n)$ hide inside the relations matrix induced by x_2 and x_1. Based on the structure of H_n and from equation (2.1), we have

\begin{equation}
 B_n = \begin{pmatrix}
 a_{6n+1} & a_{6n} + 1 \\
 b_{6n+1} + 1 & b_{6n} + 3
\end{pmatrix}.
\end{equation}

From the above argument, one can reduce $L(H_n)$ up to the equivalence $I_{6n-2} \oplus (B_n)$ by performing some row and column operations. Now, we only need to evaluate Smith normal form of the matrix B_n.

3. Analysis of the coefficients of the Smith normal form of B_n

In this section we will try to find the Smith normal form of B_n by calculating the diagonal entries. Let us define the following sequences of positive integers
with the initial conditions, $\sigma_0 = 0$, $\sigma_1 = 1$

$$
\begin{align*}
\sigma_m &= 8\sigma_{m-1} - \sigma_{m-2}, \\
\rho_m &= \sigma_m + \sigma_{m+1}, \\
r_m &= 241\sigma_{m-1} - 31\sigma_{m-2}, \\
s_m &= \sigma_{m+1} - \sigma_m, \\
t_m &= 6\sigma_m - \sigma_{m-1}.
\end{align*}
$$

The following proposition is very easy to prove by induction.

Proposition 3.1.

- $2 \nmid r_m \quad \forall \ m$,
- $2 \nmid s_m \quad \forall \ m$.

Proposition 3.2. The sequences r_m, s_m and t_m are relatively prime for each m i.e.,

(3.1) \hspace{1cm} \gcd(r_m, s_m, t_m) = 1

Proof. On contrary, suppose that there exists a prime p such that $p \mid r_m$, $p \mid s_m$ and $p \mid t_m$, then $p \mid \sigma_m$. Since $\sigma_m = 8\sigma_{m-1} - \sigma_{m-2} = s_m - t_m \Rightarrow p \mid \sigma_m$. Hence, we get $p \mid \sigma_{m-1} & p \mid \sigma_{m-2}$. Again, we have, $\sigma_{m-1} = 8\sigma_{m-2} - \sigma_{m-3} \Rightarrow p \mid \sigma_{m-3} \Rightarrow \cdots p \mid \sigma_{m-j} \cdots p \mid \sigma_1 = 1 \Rightarrow p = 1$, a contradiction, hence $(r_m, s_m, t_m) = 1$.

The Odd Case

Lemma 3.3. If $n = 2m + 1$, then we have the following relation,

$$
\begin{align*}
a_{6n+1} &= 6s_m\rho_m, \\
a_{6n} + 1 &= 6t_m\rho_m, \\
b_{6n+1} + 1 &= 6t_m\rho_m, \\
b_{6n} + 3 &= r_m\rho_m.
\end{align*}
$$

Proof. It is easy to prove by induction.

Proposition 3.4.

(3.2) \hspace{1cm} \gcd(a_{6n+1}, a_{6n} + 1, b_{6n+1} + 1, b_{6n} + 3) = \rho_m.

Proof. By Lemma 3.3 and then Proposition 3.2, we have the desired result.

Proposition 3.5. If $n = 2m + 1$, then

$$
\det B_n = 3\rho_m^2
$$

where B_n is defined in equation (2.4).
Proof.

\[
\det B_n = 6\rho_m^2 (s_m r_m - 6t_m)
= 6\rho_m^2 \left[(\sigma_m - \sigma_{m-1})^2 - 3\sigma_m \sigma_{m-1} \right]
= 6\rho_m^2 \left[(\sigma_{m-1} - \sigma_{m-2})^2 - 2\sigma_{m-1} \sigma_{m-2} \right]
\vdots
= 6\rho_m^2 \left[(\sigma_2 - \sigma_1)^2 - 2\sigma_2 \sigma_1 \right]
= 6\rho_m^2
\]

Theorem 3.6. If \(n = 2m+1 \), then the critical group of \(\mathcal{H}_n \) is the direct product of two cyclic groups i.e.,

\[
K(\mathcal{H}_n) = \mathbb{Z}_{\rho_m} \oplus \mathbb{Z}_{6\rho_m}
\]

Proof. Since the matrix \(B_n \) has Smith normal form as \(\text{diag}(s_{11}, s_{22}) \) and \(s_{11} \) equals to the greatest common divisor of all the entries of \(B_n \). So, by Proposition 3.4, we have

\[
(3.3) \quad s_{11} = \rho_m.
\]

Also \(s_{11}s_{22} = \det B_n \) and then by Proposition 3.3, we have

\[
(3.4) \quad s_{11}s_{22} = 6\rho_m^2.
\]

Combining (3.3) and (3.4), we obtain

\[
(3.5) \quad s_{22} = \rho_m,
\]

which completes the proof.

The Even Case

If \(n = 2m \), and consider the following sequence of positive integers with initial conditions, \(\rho_0 = -1 \), \(\rho_1 = 1 \),

\[
\rho_m = 8\rho_{m-1} - \rho_{m-2}, \quad \rho_m = \sigma_m + \sigma_{m-1},
\]

\[
\lambda_m = \frac{1}{2} [241\rho_{m-1} - 31\rho_{m-2}],
\]

\[
\mu_m = \frac{1}{2} [7\rho_m - \rho_{m-1}],
\]

\[
\nu_m = 6\rho_m - \rho_{m-1}.
\]

Lemma 3.7. If \(n = 2m \), then we have the following relation,

\[
a_{6n+1} = 12\mu_m \sigma_m
\]

\[
a_{6n + 1} = 6\nu_m \sigma_m
\]

\[
b_{6n+1 + 1} = 6\nu_m \sigma_m
\]

\[
b_{6n + 3} = 2\lambda_m \sigma_m.
\]
Proof. It is easy to prove by induction.

Proposition 3.8. The sequences μ_m, ν_m and λ_m are relatively prime for each m, i.e.

\[\gcd(\mu_m, \nu_m \lambda_m) = 1 \]

Proof. One can prove this proposition by similar arguments as in the proof of Proposition 3.2.

Proposition 3.9.

\[\gcd(a_{6n+1}, a_{6n} + 1, b_{6n+1} + 1, b_{6n} + 3) = 2\sigma_m \]

Proof. By Lemma 3.4 and then Proposition 3.2, we have the desired result.

Proposition 3.10. If $n = 2m$, then

\[\det B_n = 21\sigma_m^2, \]

where B_n is defined in equation 2.4.

Proof.

\[
\begin{align*}
\det B_n &= (a_{6n+1})(b_{6n} + 3) - (a_{6n} + 1)^2 \\
&= 6\sigma_m^2[(\rho_m - \rho_m-1)^2 - 6\rho_m\rho_{m-1}] \\
&= 6\sigma_m^2[(\rho_m-1 - \rho_m-2)^2 - 6\rho_m-1\rho_m-2] \\
&\vdots \\
&= 6\sigma_m^2[(\rho_2 - \rho_1)^2 - 3\rho_2\rho_1] \\
&= 60\sigma_m^2
\end{align*}
\]

Theorem 3.11. If $n = 2m$, then the critical group of \mathcal{H}_n is the direct product of two cyclic groups, i.e.

\[K(\mathcal{H}_n) = \mathbb{Z}_{2\sigma_m} \oplus \mathbb{Z}_{30\sigma_m} \]

Proof. By Proposition 3.3 and Proposition 3.10, we have the desired result.

Proposition 3.12. For each $m, n \geq 1$ we have

\[\sigma_{m+n} = \sigma_{m+1}\sigma_n - \sigma_m\sigma_{n-1} \quad \text{and} \quad \rho_{m+n} = \sigma_{m+1}\rho_n - \sigma_m\rho_{n-1} \]

*Proof. Set $A := \begin{pmatrix} 8 & -1 \\ 1 & 0 \end{pmatrix}$ we have that

\[A^m := \begin{pmatrix} 8 & -1 \\ 1 & 0 \end{pmatrix}^m = \begin{pmatrix} \sigma_{m+1} & -\sigma_m \\ \sigma_m & -\sigma_m \end{pmatrix} \]
Since $A^{m+n-1} = A^m A^{n-1}$, we have
\[
\begin{pmatrix}
\sigma_{m+n} & -\sigma_{m+n-1} \\
\sigma_{m+n-1} & -\sigma_{m+n-2}
\end{pmatrix} = \begin{pmatrix}
\sigma_{m+1} & -\sigma_m \\
\sigma_m & -\sigma_{m-1}
\end{pmatrix} \begin{pmatrix}
\sigma_n & -\sigma_{n-1} \\
\sigma_{n-1} & -\sigma_{n-2}
\end{pmatrix}
\]
Comparing the top left entry in the left-hand side with the corresponding in the right-hand side gives the first equality. For the second identity, we use the inductive hypothesis implies that σ_m divides σ_{m+1}. Moreover, we have that $\det(A) = \det(A + I)$.

Theorem 3.13.

- If a and b are both even and $a \mid b$, then $\sigma_a \mid \sigma_b$
- If a and b are both odd and $a \mid b$, then $\rho_a \mid \rho_b$
- If a is odd and b is even and $a \mid b$, then $\rho_a \mid \sigma_b$

Moreover, we have that $\det(A_a) \mid \det(A_b)$.

Proof. For the first statement, we prove by induction on t that σ_a divides σ_{at}. This is true if $t = 0$. If σ_a divides σ_{at}, hence we have $\sigma_{a(t+1)} = \sigma_{at+1} \sigma_a - \sigma_{at} \sigma_a$. The inductive hypothesis implies that σ_a divides second term, hence it also divides $\sigma_{a(t+1)}$.

Now we prove that $2a+1$ divides $2b+1$, then ρ_a divides ρ_b. First notice that, by Proposition 3.12, we have $\sigma_{2m+1} = \sigma_{m+1}^2 - \sigma_m^2$. Let $2b+1 = (2a+1)(2t+1)$. We prove by induction on t that ρ_a divides $\rho_b = \rho_{2at+at+1}$. This is true if $t = 0$, if ρ_a divides $\rho_{2at+at+1}$, we have $\rho_{2a(t+1)+a+(t+1)} = \rho_{(2a+1)(2at+at+1)} = \sigma_{2a+2} \rho_{2at+at+1} - \sigma_{2a+1} \rho_{2at+at+1}$. The first term is a multiple of ρ_a by induction hypothesis. Moreover, we have $\sigma_{2a+1} = \sigma_{a+1}^2 - \sigma_a^2 = (\sigma_{a+1} + \sigma_a)(\sigma_{a+1} - \sigma_a) = \rho_a(\sigma_{a+1} - \sigma_a)$. Hence the second term is a multiple of ρ_a.

Finally, we prove that if $2a+1$ divides $2b$, then ρ_a divides σ_{2a+1}. Let $2b = (2a+1)2t$. We have to prove that ρ_a divides $\sigma_{(2a+1)t}$. As we have already seen, ρ_a divides σ_{2a+1}. Moreover, we have that σ_{2a+1} is a divisor of $\sigma_{(2a+1)t} = \sigma_b$. By these facts and being $\det(A_a)$, we have the second statement.

By the statements verifying during the proof of Theorem 3.13, one can see that for a dividing b, each entry of the matrix (A_a), divides the corresponding on in the matrix $\det(A_b)$. This leads to the following theorem.

Theorem 3.14. If $a \mid b$, then the critical group of \mathcal{H}_a is isomorphic to a subgroup of the critical group of \mathcal{H}_b.

4. The tree number

Let G be a graph, then the tree number $k(G)$ is equal to the number of spanning trees of the graph G. In this section, we will give the closed formula for the number of spanning trees for the graph \mathcal{H}_n, we refer [3] for the terminologies.

Proposition 4.1. [5]

Let G be a nearly regular graph of degree r and H be its subgraph obtained by removing the exceptional vertex, then
\[k(G) = P_H(r), \]
where $P_H(t)$ is the characteristic polynomial of the graph H.
Remark 4.2. The wheel graph W_n can be obtained from a cycle C_n by adding a new vertex connected by an edge to all vertices of C_n. Hence, W_n is nearly regular graph and by proposition 4.1, we get

$$k(W_n) = P_{C_n}(r).$$

The characteristic polynomial of a cycle C_n is given as

$$P_{C_n}(t) = 2T_n\left(\frac{t}{2}\right) - 2,$$

where

$$T_n(t) = \frac{n}{2} \sum_{m=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^m \binom{n-m}{m} (2t)^{n-2m}$$

is the Chebyshev polynomial of the first kind. It is easy to see that it gives the same number of spanning trees of wheel graph given by N. Biggs in [2].

A very interesting application of the Proposition 4.1 is given as follows. The inner dual planner graph G^{**} is the subgraph of the usual dual G^* obtained by deleting the vertex corresponding to the infinite region of the original planer graph.

Let G be a plane graph in which any finite region is bounded by a cycle of fixed length r. Then, G^* is a nearly regular graph, so we have the following result.

Proposition 4.3. [5]

Let G is a plane graph in which any bounded region is a cycle of length r, then

$$k(G) = P_{G^{**}}(r),$$

where $P_{G^{**}}(t)$ is the characteristic polynomial of the graph G^{**}.

Theorem 4.4. The tree number for the graph \mathcal{H}_n is

$$k(\mathcal{H}_n) = P_{C_n}(8) = 2T_n(4) - 2,$$

where $T_n(t)$ is the Chebyshev polynomial of the first kind.

Proof. Since \mathcal{H}_n is a plane graph in which any bounded region is bounded by a cycle of length 8 and total number of bounded regions is n. Hence, in this case the inner dual will be a cycle of length n and its characteristic polynomial is defined in equation (4.1), and it follows the result.

Acknowledgement

The author is very thankful to the referee for his valuable suggestions for the improvement of this paper.
References

Received by the editors April 19, 2012