PARTICULAR F-STRUCTURE ON VECTOR BUNDLE AND COMPATIBLE D-CONNECTIONS

Emil Stoica
Brasov

Abstract

The structures determined by a tensor field of (1, 1) type of constant rank, with the property $f^3 + f = 0$, was studied by many authors. R. Miron and Gh. Atanasiu determined the set of all connections compatible with f-structures, the integrability of f-structures and studied the case of (f, g)-structures in [1].

In the present paper we consider f-structures on the total space E of the vector bundle (E, π, M) and we shall find the non-linear connections N on E so that the tensor field f has a particular form. In this manner, f-structures of type I and type II are studied and in these cases the compatible d-connections from general case [2] are determined.

AMS Mathematics Subject Classification (1991): 53B40.

Key words and phrases: f-structure, vector bundles.

Let $\xi = (E, \pi, M)$ be a vector bundle over n-dimensional manifold M, $\chi(E)$ the $F(E)$-modul of the vector fields, $\tau^r_0(E)$ the $F(E)$-modul of the tensor field of (r, q) type and $\tau^p_0(E)$ the algebra of the Finsler tensor fields of (r, q) type.

Let us consider f-structures on E, τ tensor fields $f \in \tau^1(E)$ of constant rank r, with the property $f^3 + f = 0$.

In the following we shall suppose that there exists an f-structure on E. We shall consider a non-linear connection N on E, then for $\xi \in E$, $TE = N_{\xi} \oplus E_{\xi}$, where dim $N_{\xi} = n$ and dim $E_{\xi} = n$, so it results that total space TE is decomposed $TE = HE \oplus VE$.

Proposition 1 If f is f-structure on E then there is a unique decomposition of f in the following d-tensor fields:

$$f = f^3 + f^4 + f^4, \text{ where } f \in \tau^1(E), \quad f \in \tau^1(E),$$

(1)
\[3f \in \tau^p \| \nu_\alpha (E) \text{ and } 4f \in \tau^p \| \nu_\beta (E), \text{ i.e.} \]
\[\begin{align*}
3f(\omega, X) &= f(\omega^\beta, X^\beta), 3f(\omega, X) = f(\omega^\alpha, X^\alpha) \\
2f(\omega, X) &= f(\omega^\alpha, X^\alpha), 2f(\omega, X) = f(\omega^\beta, X^\beta)
\end{align*} \quad (2)
\]
\[\forall \omega \in \chi(\nu) \text{ and } \nu \omega \in \chi(\nu^\alpha). \]
\[\left\{ \begin{align*}
3f(\nu^\beta) &= 3f(\nu) + 2f(\nu) \\
2f(\nu^\beta) &= 2f(\nu) + 3f(\nu)
\end{align*} \right\}, \quad \forall \nu = X^\alpha + X^\beta. \quad (3)
\]

Let \(\nabla \) be a linear connection on \(E \).

Definition 1 A linear connection \(\nabla \) on \(E \) is a \(d \)-connection compatible with structure \(f \) on \(E \) if:

a) \(\nabla \) preserves parallelism of the horizontal \(H \) and vertical \(H^\nu \) distribution.

b) \(\nabla_X f - f \nabla_X = 0, \forall X \in \chi(\nu) \).

Theorem 1 If \(\nabla^\nu \) is a fixed linear \(d \)-connection on \(E \), then the following connection

\[\nabla_X = \nabla_X^\nu - \frac{1}{2} \left[\nabla^\nu_X \circ (f + 2f \circ \nabla^\nu_X \circ f - 2f \circ f \circ f + 2f \circ f) \right] \]

\[= \nabla_X^\nu - \frac{1}{2} \left[\nabla^\nu_X \circ (f \circ f' + f \circ f' \circ f) - 3 \left(f \circ f' \right) \circ f \circ f' \circ f \circ f' \right] \]

\[= \nabla_X^\nu - \frac{1}{2} \left[\nabla^\nu_X \circ (f \circ f' \circ f) - 3 \left(f \circ f' \right) \circ f \circ f' \circ f \circ f' \right] \]

is a \(d \)-connection compatible with the structure \(f \).

Let \(\gamma \) be a local chart on \(E \) and \((x^i, y^i), i = 1, 2, \ldots, n \) the coordinates of point \(u \) in \(\pi^{-1}(U) \).

If \(N^\nu \) is a fixed non-linear connection on \(E \), then in the adapted frame \(\left\{ \frac{\partial}{\partial x^i}, \frac{\partial}{\partial y^i} \right\} \), the tensor field \(f \) is written in the form

\[f = f^\beta \frac{\partial}{\partial y^i} \otimes dx^i + f^\alpha \frac{\partial}{\partial x^j} \otimes dy^j + f^\mu \frac{\partial}{\partial y^i} \otimes dx^i + f^\nu \frac{\partial}{\partial x^j} \otimes dy^j. \quad (5) \]
If $B \in \tau^{(1,0)}(E)$ is a d-tensor field and $N^\rho = N^\rho_\sigma = B^\rho_\sigma$ is another non-linear connection on E then the tensor field f has the components $(F^\rho_\alpha, F^\rho_\gamma, F^\rho_\alpha, N^\rho_\gamma)$.

\[
\begin{align*}
F^\rho_\alpha &= f^\rho_\alpha - f^\rho_\beta B^\beta_\alpha \\
F^\rho_\gamma &= f^\rho_\gamma \\
F^\rho_\alpha &= f^\rho_\alpha + f^\rho_\beta B^\beta_\alpha - f^\beta_\gamma B^\rho_\beta \\
F^\rho_\gamma &= f^\rho_\gamma + f^\rho_\beta B^\beta_\gamma .
\end{align*}
\]

(6)

When on the total space E' there exists a non-linear connection so that the tensor f has the form $f = (F^\rho_\gamma, 0, 0, N^\rho_\gamma)$, f will be called f-structure of type I, respectively f-structure of type II, if f has the form $f = (0, F^\rho_\gamma, F^\rho_\gamma, 0)$.

From (6) it is clear that the f-structure of type I exists only in the case $f^\rho_\gamma = 0$ and a non-linear connection N for which $f^\rho_\gamma = 0$ exists.

Proposition 2 The f-structure is of type I if and only if there exists a tensor field $B \in \tau^{(1,0)}(E)$ which satisfies the equation

\[
f^\rho_\beta B^\beta_\gamma - f^\beta_\gamma B^\rho_\beta = f^\rho_\gamma
\]

(7)

Since, rank $f = r < n + m$, the system (7) has not always a solution. In the affirmative case, the d-tensor field f has the form:

\[
f = f + d^r f, \quad \text{where} \quad f \in \tau^{(1,0)}(E), \quad d^r f \in \tau^{(0,1)}(E)
\]

and the relation $d^r f = 0$ is equivalent with:

\[
\begin{align*}
\{ f \circ f \circ f \circ f - f = 0 \\
\circ f \circ f \circ f \circ f - f = 0 .
\end{align*}
\]

(9)

Theorem 2 If a linear d-connection (distinguished connection) exists on E, then the distinguished f-connection are of type I and of one of them is given by

\[
\begin{align*}
\nabla_\alpha = \nabla_\alpha^\nu - \frac{1}{2} [f \circ \nabla_\alpha^\nu \circ f + f \circ \nabla_\alpha^\nu \circ f - \\
2(f \circ f \circ f \circ f \circ f) \circ \nabla_\alpha^\nu - 2\nabla_\alpha^\nu (f \circ f \circ f \circ f \circ f) = \\
3 \circ f \circ f \circ f \circ f \circ f - 3 \circ f \circ f \circ f \circ f \circ f]
\end{align*}
\]

(10)
In local coordinates, if we denote by $D^\nu = (L^\nu_\mu, L^\nu_\mu, C^\mu_\nu_\rho, C^\mu_\nu_\rho)$ the local components of linear d-connection ∇^ν, then the distinguished f-connection of type I is characterized by

$$
\begin{align*}
L^\nu_\mu &= L^\nu_\mu + \frac{1}{2} f^\nu_\mu f^\rho_\mu - \frac{1}{2} f^\nu_\mu f^\rho_\mu + \frac{1}{2} f^\nu_\mu f^\rho_\mu f^\tau_\mu f^\tau_\rho \\
L^\nu_\mu &= L^\nu_\mu + \frac{1}{2} f^\nu_\mu f^\rho_\mu - \frac{1}{2} f^\nu_\mu f^\rho_\mu + \frac{1}{2} f^\nu_\mu f^\rho_\mu f^\tau_\mu f^\tau_\rho \\
C^\mu_\nu_\rho &= C^\mu_\nu_\rho + \frac{1}{2} f^\nu_\mu f^\rho_\mu - \frac{1}{2} f^\nu_\mu f^\rho_\mu + \frac{1}{2} f^\nu_\mu f^\rho_\mu f^\tau_\mu f^\tau_\rho \\
C^\mu_\nu_\rho &= C^\mu_\nu_\rho + \frac{1}{2} f^\nu_\mu f^\rho_\mu - \frac{1}{2} f^\nu_\mu f^\rho_\mu + \frac{1}{2} f^\nu_\mu f^\rho_\mu f^\tau_\mu f^\tau_\rho .
\end{align*}
$$

(11)

Theorem 3 The set of all distinguished f-connections of type I is given by

$$
\nabla^*_x = \nabla^*_x + \Omega(W_X),
$$

(12)

where ∇^*_x is the connection (10), $W_X \in \mathfrak{g}(E)$ is an arbitrary tensor field so that $[\Omega(W_X)Y^\mu]^\nu = 0$, $[\Omega(W_X)Y^\nu]^\mu = 0$ and Ω is Obata operator [4].

The structures of type II, $f = 2f + 3f$, under some conditions, permit to study the general case of f-structures.

For the study of these structures we will consider the following cases:

a) $n = \text{dim}H^E > \text{dim}Y^E = m$

If the rank $f \geq m$, then the system $f^\nu_\mu f^\rho_\mu + f^\rho_\mu = 0, k = 1, 2, \ldots , \infty$ admits infinite solutions. Moreover, if there exist f^{ν}_μ for which $f^{\nu}_\rho f^{\rho}_\mu - f^{\nu}_\rho = 0$, then there exists a non-linear connection $N^{\mu}_\nu = N^{\mu}_\nu - f^{\mu}_\rho f^{\rho}_\nu$ and the tensor field f can be written in the form $(0, F^\mu_\nu, F^\mu_\nu, 0)$.

b) $n = m$

If we consider rank $f \geq m = n$, rank $(f^{\mu}_\nu = \text{max} = \text{max})$ and the equations $f^{\nu}_\rho f^{\rho}_\mu - f^{\nu}_\rho = 0, f^{\nu}_\rho f^{\rho}_\mu + f^{\rho}_\nu = 0$ are satisfied, then the non-linear connection $N^{\mu}_\nu = N^{\mu}_\nu - f^{\mu}_\rho f^{\rho}_\nu$, the tensor field f is of the form $(0, F^\mu_\nu, 0)$.

c) $n < m$

Let us suppose $F^\mu_\nu = 0, \text{rank } f \geq m$, then the equation $f^{\nu}_\rho f^{\rho}_\mu - f^{\nu}_\rho = 0$

admits infinite solutions. Let (B^μ_ν) be a solution for which $f^{\nu}_\rho f^{\rho}_\mu + f^{\rho}_\nu = 0$, then there exists a non-linear connection $N^\mu_\nu = N^\mu_\nu - f^\mu_\rho f^\rho_\nu$ so that $f = (0, F^\mu_\nu, F^\mu_\nu, 0)$. In this case, Y. Ichiijo had designed a natural example [2].

Let us denote by $N^\mu_\nu = F^\mu_\nu$ and $f^\mu_\nu = F^\mu_\nu$, in the adapted frame, in all the above cases.

Theorem 4 If there exists a non-linear connection N for which $f = 2f + 3f$, then there exist distinguished f-connections of type II, one of them is given
by:

\[\nabla_X = \nabla_X^\perp - \frac{1}{2} f^\perp \circ \nabla_X \circ f^\perp - 2 \frac{f \circ f^\perp}{f^2} \circ \nabla_X - 2 \frac{\nabla_X \circ f^\perp}{f^2} \circ f - 3 \frac{f \circ f^\perp}{f^2} \circ \nabla_X - \frac{1}{2} f \circ \nabla_X \circ f - 2 \frac{f \circ f^\perp}{f^2} \circ f \circ \nabla_X - 2 \frac{\nabla_X \circ f}{f^2} \circ f - 3 \frac{f \circ f^\perp}{f^2} \circ f \circ \nabla_X \circ f^\perp \quad (13) \]

where \(\nabla_X^\perp \) is a fixed linear d-connection on \(E \).

\[\nabla = \nabla_X + \Omega(W_X), \quad (14) \]

where \(\nabla_X \) is the connection (12) \(W_X \in T(\mathcal{F}) \) an arbitrary tensor field and \(\Omega(W_X) \odot \odot 1 = 0, \Omega(W_X) \odot \odot 2 = 0 \).

If we denote by \(DT^\perp = (L^\perp_\nu, L^\perp_\mu, L^\perp_\nu, L^\perp_\nu) \) the local coordinates of the linear d-connection \(\nabla^\perp \) then the distinguished f-connection of type II, (13), is characterized by:

\[\begin{align*}
L^\perp_\nu &= L^\perp_\nu - \frac{2}{3} f^\perp \odot f^\perp + \frac{2}{3} f^\perp \odot f^\perp \\
L^\perp_\nu &= L^\perp_\nu - \frac{3}{4} f^\perp \odot f^\perp + \frac{3}{4} f^\perp \odot f^\perp + \frac{3}{4} f^\perp \odot f^\perp + \frac{3}{4} f^\perp \odot f^\perp \\
C^\perp_\nu &= C^\perp_\nu - \frac{1}{4} f^\perp \odot f^\perp + \frac{1}{4} f^\perp \odot f^\perp + \frac{1}{4} f^\perp \odot f^\perp + \frac{1}{4} f^\perp \odot f^\perp \\
C^\perp_\nu &= C^\perp_\nu - \frac{3}{4} f^\perp \odot f^\perp + \frac{3}{4} f^\perp \odot f^\perp + \frac{3}{4} f^\perp \odot f^\perp + \frac{3}{4} f^\perp \odot f^\perp
\end{align*} \quad (15) \]

Remark. If we consider natural f-structure \(F = (\odot, \odot^2) \) with \(B_\nu C^\perp_\nu = \delta^\perp_\nu \), and if \(f_\nu = -C_\nu, f^\perp_\nu = B^\perp_\nu, f_\nu = f^\perp_\nu = \delta^\perp_\nu \odot \odot, \) then the linear distinguished f-connection (15), represents the natural distinguished f-connection [5].

References

