THE INJECTIVE HULL AND THE \(\mathfrak{bc} \)-HULL OF A TOPOLOGICAL SPACE

Yuri L. Ershov
Research Institute for Informatics and Mathematics in Education, Novosibirsk State University
Pirogov Street 2, Novosibirsk 630090, Russia

Abstract

A close connection between the notion of the \(\mathfrak{bc} \)-hull and the notion of the injective hull (cf. the definitions below) of a topological \(T_\sigma \)-space is established.

AMS Math. Subject Classification (1991): 54C85, 54D10, 54F65

Key words and phrases: topological \(T_\sigma \)-space, injective hull, \(\mathfrak{bc} \)-hull

Bounded complete domains (shortly, \(\mathfrak{bc} \)-domains) [1] or, which is the same, complete \(A_\sigma \)-spaces [2] form a subcartesian closed full subcategory of the category \(\text{TOP}_\sigma \) of topological \(T_\sigma \)-spaces. This subcategory is important for denotational semantics.

The author [3] introduced the notion of the \(\mathfrak{bc} \)-hull of a topological space \(X \) as follows. A homeomorphic embedding \(\lambda : X \to B \) of a space \(X \) in a \(\mathfrak{bc} \)-domain \(B \) is called the \(\mathfrak{bc} \)-hull of \(X \) if the following conditions are satisfied:

1. **Unversality.** For any continuous mapping \(f : X \to B' \) from \(X \) to a \(\mathfrak{bc} \)-domain \(B' \) there exists a continuous mapping \(f^*: B \to B' \) such that \(f^* \lambda = f \).

2. **Minimality.** If \(f : B \to B \) is a continuous mapping and \(f \lambda = \lambda \), then \(f = id_B \).

In [3], the existence of the \(\mathfrak{bc} \)-hull of an \(\alpha \)-space (cf. the definition below) is established.
With each topological (T_0)-space X we associate binary relations \leq_X and \prec_X on X defined as follows. For $\xi_0, \xi_1 \in X$ we set

$\xi_0 \leq_X \xi_1 \iff$ for any open subset $V \subseteq X$ from $\xi_0 \in V$ it follows that $\xi_1 \in V \iff \xi_0 \in \text{cl}(\xi_1)$, where cl denotes the closure;

$\xi_0 \prec_X \xi_1 \iff \xi_1 \in \text{int}(\xi_1 \mid \xi_0 \leq_X \xi_1)$, where int denotes the interior.

The relation \leq_X is a partial order on X and the relation \prec_X is transitive. The relations \leq_X and \prec_X are connected as follows:

$\xi_0 \prec_X \xi_1 \implies \xi_0 \leq_X \xi_1$,

$\xi_0 \leq_X \xi_0' \prec_X \xi_1^* \leq_X \xi_1 \implies \xi_0 \prec_X \xi_1$.

A space X is called an α-space if for any open subset $V \subseteq X$ and point $\xi \in V$ there exists a point $\xi' \in V$ such that $\xi' \prec_X \xi$.

The following characterization of bc-domains (cf. [2, Proposition 2, 34]) is essential for the further considerations.

Proposition 1. For a topological T_0-space X the following conditions are equivalent:

1. X is a bc-domain,
2. for any topological space Y, everywhere dense subspace Y_0, and continuous mapping $f_0 : Y_0 \to X$ there exists a continuous mapping $f : Y \to X$ such that $f_0 = f|Y_0$.

Remark 2. The set of extensions \hat{f} of f_0 in condition (2) has the largest element, i.e., there exists a continuous mapping $f^* : Y \to X$ such that $f^*|Y_0 = f_0$ and for any continuous mapping $f : Y \to X$ such that $f|Y_0 = f_0$ and any $\eta \in Y$ we have $f(\eta) \leq \hat{f}(\eta)$.

Let X be a subspace of Y. The space Y is called an essential extension of X if for any continuous mapping $f : Y \to Z$ from the fact that $f|X$ is a homeomorphic embedding of X in Z it follows that f is a homeomorphic embedding of Y in Z.

Proposition 3. If $Y \supseteq X$ is the bc-hull of X, where λ is the identity mapping id_X, then Y is an essential extension of X.
Lemma 4. The space X is everywhere dense in Y, i.e., $\text{cl}X = Y$.

Proof. By [2, Proposition 5, §3], $Y_0 = \text{cl}X \subseteq Y$ is a complete A_0-space, i.e., Y_0 is a bc-domain. The space Y is the bc-hull of X. By the universality condition, there exists a continuous mapping $f : Y \to Y_0$ such that $f|_X = \text{id}_X$. By the minimality condition, $f = \text{id}_Y$, i.e., $Y = Y_0 = \text{cl}X$. □

Proof of Proposition 3. Let $f : Y \to Z$ be a continuous mapping such that $f|_X$ is a homeomorphic embedding of X in Z. Since any (T_0)-space is homeomorphically embedded in a bc-domain, without loss of generality, we assume that Z is a bc-domain. Let Z_0 be the closure of $f(X)$ in Z. By Lemma 4, we have $f(Y) \subseteq Z_0$. Indeed, if $\eta \in Y$ is an element such that $f(\eta) \in Z \setminus Z_0$, then $\eta \in f^{-1}(Z \setminus Z_0)$. Since $V = f^{-1}(Z \setminus Z_0)$ is a nonempty open subset, $V \cap X = \emptyset$, which is impossible. The space Z_0 is a bc-domain and $X_0 = f(X)$ is everywhere dense in Z_0. Let $g_0 : X_0 \to X \subseteq Y$ be a homeomorphism such that $f_0 = \text{id}_X$, and $g_0(f|_X) = \text{id}_Y$. By Proposition 1, there exists a continuous mapping $g : Z_0 \to Y$ extending g_0. The continuous mapping $gf : Y \to Y$ is such that $(gf)|_X = g_0(f|_X) = \text{id}_Y$. Hence $gf = \text{id}_Y$ and f is a homeomorphic embedding of Y in $Z_0 \subseteq Z$. □

Remark 5. Proposition 3 gives the positive answer to Question 1 in [3]. An answer to Question 2 in [3] is also positive. Indeed, by the construction of the bc-hull $B(X)$ of an α-space X, there exists a bc-domain B such that $B \subseteq B(X) \subseteq B$ and X is a smooth subspace of B. Therefore, X is a smooth subspace of any intermediate space.

As is shown in [4], for any T_0-space X there exists "the largest" essential extension λX. If λX is an injective space, then λX is called the injective hull of X. It is convenient to use the following obvious characterization of the injective hull:

A T_0-space Y including X as a subspace is the injective hull of X if and only if Y is injective and is an essential extension of X.

The following theorem establishes a close connection between the notion of the injective hull and the notion of the bc-hull.

Theorem 6. A topological space X possesses the bc-hull if and only if X possesses the injective hull.
Lemma 7. Let Z be an essential extension of X, $X \subseteq Z$. If f is a continuous mapping from Z to Z such that $f|_Z = \text{id}_Z$, then $f = \text{id}_Z$.

Proof. Let $Z_0 \supseteq Z$ be the largest essential extension of Z. Then Z_0 is the largest essential extension of X. The space Z_0 is also the largest essential extension of $f(Z)$, $Z_0 \subseteq f(Z)$, $Z \subseteq Z_0$. Since Z is an essential extension of X and $f|_X = \text{id}_X$, we conclude that f is a homeomorphism from X to $f(X)$. Since the largest essential extension is unique, there exists a homeomorphism g from Z_0 onto Z_0 such that $g|_Z = f$ (consequently, $g|_X = \text{id}_X$). If $f \neq \text{id}_Z$, then $g \neq \text{id}_Z$. Thus, it suffices to prove the lemma under the assumption that Z is a maximal essential extension of X. As is noticed in [5], for any point $\zeta \in Z$ we have $\zeta = \sup \{X_\xi : \xi \in X, \xi \leq \zeta \}$. Since f is monotone, $f(\zeta) = \sup f(X_\xi) = \sup X_\xi = \zeta$. The mapping f^{-1} is also a homeomorphism from Z such that $f^{-1}|_Z = \text{id}_Z$. Hence $f^{-1}(\zeta) = \zeta$ for any point $\zeta \in Z$. Thus, if $f \neq \text{id}_Z$, then there exists a point ζ such that $f(\zeta) > \zeta$. We have $\zeta > f^{-1}(\zeta) > \zeta$, which is a contradiction. Thus, $f = \text{id}_Z$.

Corollary 8. Let $X \subseteq Y_0$ and $X \subseteq Y_1$ be essential extensions of X. Then there exists at most one continuous mapping $f : Y_0 \to Y_1$ such that $f|_X = \text{id}_X$.

Proof. Let $Y \supseteq X$ be the h-closure of X. By Proposition 3, Y is an essential extension of X. If Y is an injective space, then Y is the injective hull of X. Assume that the space Y is not injective. Consider the extension Y' obtained from Y by adding the new isolated largest element T.

Lemma 9. The space Y' is injective. This space is an essential extension of Y.

Proof. Let X_0 be a subspace of X_1, $g_0 : X_0 \to Y'$ a continuous mapping, and X_2 the closure of $g_0^{-1}(Y)$ in X_1. Then $X_1 \setminus X_2$ is an open subset, $g_0|_{X_1 \setminus X_2}(Y')$
is a continuous mapping from $g_0^{-1}(Y)$ to Y, and $g_0^{-1}(Y)$ is everywhere dense in X. By Proposition 1, there exists a continuous mapping $g_2 : X_2 \to Y$ extending $g_0|_{g_0^{-1}(Y)}$. We define a mapping g_1 from X_1 to Y by setting $g_1(\xi) = g_2(\xi)$ for $\xi \in X_2$ and $g_1(\xi) = \tau$ for $\xi \notin X_2$. It is easy to verify that g_1 is continuous and $g_1|_{X_1} = g_0$. Thus, Y is an injective space.

Since the space Y is not injective, there is no largest element in Y. Therefore, there exist inconsistent elements η_0 and η_1, i.e., there exists no element η in Y such that $\eta_0 \preceq_Y \eta$ and $\eta_1 \preceq_Y \eta$. We show that this implies the existence of open subsets U_0 and U_1 such that $\eta_0 \in U_0$, $\eta_1 \in U_1$, and $U_0 \cap U_1 = \emptyset$. Indeed, since Y is an α-space, we have $\eta_0 = \sup\{\eta_0 | \eta \preceq_Y \eta_0\}$ and $\eta_1 = \sup\{\eta_1 | \eta \preceq_Y \eta_1\}$. If every pair $\eta_0 \preceq_Y \eta_0$, $\eta_1 \preceq_Y \eta_1$ is consistent, then the family $\{\eta_0 \vee \eta_1 | \eta \preceq_Y \eta_0, \eta \preceq_Y \eta_1\}$ is directed. But the existence of $\eta = \sup\{\eta_0 \vee \eta_1 | \eta \preceq_Y \eta_0, \eta \preceq_Y \eta_1\}$ contradicts the fact that η_0 and η_1 are inconsistent. Let $\eta_0(\preceq_Y \eta_0)$ and $\eta_1(\preceq_Y \eta_1)$ be inconsistent. Then $U_0 = \text{int}(\eta | \eta_0 \preceq_Y \eta)$ and $U_1 = \text{int}(\eta | \eta_1 \preceq_Y \eta)$ satisfy the required conditions.

Now, we will prove that Y^T is an essential extension of X. Let $f : Y^T \to Z$ be a continuous mapping such that $f|_Y$ is a homeomorphic embedding of Y in Z. Since $f(Y)$ is homeomorphic to Y, there is no largest element in $f(Y)$. Hence $f(\top) \neq f(Y)$. Thus, f is a one-to-one mapping. It suffices to prove that $f(\top)$ is an isolated point of $f(Y^T)$. Since $f(U_0)$ and $f(U_1)$ are open subsets of $f(Y^T)$, there exist open subsets V_0 and V_1 of Z such that $V_0 \cap f(Y) = f(U_0)$ and $V_1 \cap f(Y) = f(U_1)$. We have $(V_0 \cap V_1) \cap f(Y) = f(U_0) \cap f(U_1) \cap f(\top) = f(U_0 \cap U_1) = \emptyset$. Since $f(\top) \notin V_0 \cap V_1$, we conclude that $f(\top)$ is an isolated point of $f(Y^T)$. The lemma is proved.

Lemma 9 completes the proof of the theorem. □

Thus, a T_0-space X possesses the bc-hull if and only if X possesses the injective hull; moreover, the injective hull coincides with the bc-hull or is obtained from the bc-hull by adding the new isolated largest element.

In [5], the following characterization of spaces that possess the injective hull is obtained:

A T_0-space X possesses the injective hull if and only if for any open subset $U \subseteq X$ and point $\xi \in U$ there exists a finite set ξ_0, \ldots, ξ_n of points in X and a family of open sets U_0, \ldots, U_n such that $\xi_i \prec \xi$, $\xi_i \in U_i$ for all $i \leq n$, and $\bigcap_{i \leq n} U_i \subseteq U$.
In conclusion, we present a simple example of a space that satisfies the conditions of the above characterization and is not an α-space.

Let \mathcal{S} be an infinite set, and let $P(\mathcal{S})$ be the family of all subsets of \mathcal{S} endowed with the Scott topology. Consider the subspace

$$X = \{ S_0 \mid S_0 \subseteq \mathcal{S}, S_0 \text{ is infinite or it contains at most one element}\}$$

of $P(\mathcal{S})$. The injective hull of X is $P(\mathcal{S})$, whereas X is not an α-space.

References

Received February 9, 1999.