FIXED POINTS IN TWO METRIC SPACES

Y. J. Cho1, S. M. Kang1, S. S. Kim2

Abstract. We give some fixed point theorems in two complete metric spaces. Then we improve and extend some results due to D. Dalučo, B. Fisher and V. Popa.

AMS Mathematics Subject Classification: 47H10, 54H25

Key Words and Phrases: Dalić’s set, common fixed point

In [4], to give a unified approach for contraction mappings, D. Dalić considered the set F of all continuous functions $g : [0, +\infty)^3 \to [0, +\infty)$ satisfying the following conditions:

(1) $g(1, 1, 1) = h < 1,$
(2) $u, v, w \in [0, +\infty)$ are such that $u \leq g(v, v, u) + u \leq g(v, v, v)$ or $u \leq g(u, u, v) + u \leq g(u, v, v),$ then $u \leq hu,$

and proved the following:

Theorem A. Let (X, d) be a complete metric space. If S and T are two mappings from X into itself, satisfying the following conditions:

\[d(Sx, Ty) \leq g(d(x, y), d(x, Sx), d(y, Ty)) \]

for all $x, y \in X,$ where $g \in F,$ then S and T have a unique common fixed point in $X.$

Some authors proved many kinds of fixed point theorems for contraction type mappings and expansive mappings by using Dalić’s set ([1]-[3], [7], [8], [10]). On the other hand, in [5] and [6], B. Fisher proved some fixed point theorems in two complete metric spaces as follows:

Theorem B. Let (X, d) and (Y, e) be complete metric spaces, if T is a mapping from X into Y and S is a mapping from Y into $X,$ satisfying the following conditions:

\[e(Tx, TSy) \leq c \cdot \max\{d(x, Sy), e(y, Tsy), c(y, Tsy)\} \]

\[d(Sy, STx) \leq c \cdot \max\{e(y, Tsy), d(x, Sy), d(x, STx)\} \]

for all $x, y \in X,$ where $0 \leq c < 1,$ then ST have a unique fixed point z in X and TS has a unique fixed point w in $Y.$ Further, $Tz = w$ and $Sw = z.$

1Department of Mathematics, Gyeongsang National University, Chinju, 660-701, Korea
2Department of Mathematics, Sogang University, Pusan 614-714, Korea
Recently, in [9], V. Popa extended and improved the results of B. Fischer and V. Popa's results, we introduce a new class G of all functions $g : [0, +\infty)^3 \rightarrow [0, +\infty)$ satisfying some conditions and prove some fixed point theorems in two complete metric spaces by using our class. Our results also extend and improve the results of B. Fisher [5], [6] and V. Popa [9].

Let G be the set of all continuous functions $g : [0, +\infty)^3 \rightarrow [0, +\infty)$ satisfying the following conditions:

(1) $g(0, 0, 0) = 0.$
(2) If $u, v \in [0, +\infty)$ be such that $u^2 \leq g(u, v, 0)$ or $v^2 \leq g(0, u, 0)$ or $u^2 \leq g(0, 0, u)$, then $u \leq v$ for some $0 \leq c < 1.$

Example 1. (1) If we define a function $g : [0, +\infty)^3 \rightarrow [0, +\infty)$ by

$$g(u, v, w) = c \cdot \max\{u, v, w\}$$

for all $u, v, w \in [0, +\infty)$, then $g \in G.$

(2) If we define a function $g : [0, +\infty)^3 \rightarrow [0, +\infty)$ by

$$g(u, v, w) = c \cdot \max(uw, vw, uv)$$

for all $u, v, w \in [0, +\infty)$, where $0 \leq c < 1$, then $g \in G.$

(3) If we define a function $g : [0, +\infty)^3 \rightarrow [0, +\infty)$ by

$$g(u, v, w) = u + w - bw + cuw$$

for all $u, v, w \in [0, +\infty)$, where $0 \leq b, c < 1$, then $g \in G.$

(4) If we define a function $g : [0, +\infty)^3 \rightarrow [0, +\infty)$ by

$$g(u, v, w) = (ua^k + bv + cw)^2$$

for all $u, v, w \in [0, +\infty)$, where $k > 1, 0 < a, b, c < 1$, then $g \in G.$

Now, we give our theorem as follows:

Theorem 1. Let (X, d) and (Y, e) be two complete metric spaces. If T is a mapping from X into Y and S is a mapping from Y into X satisfying the following conditions:

(1) $e(Tx, Ty) \leq d(Sy, Ty) + d(x, Sy) + e(y, Ty) + e(y, Tx) + e(Ty, Ty),$ $d(Sy, Ty)$

(2) $d(Tg(x), Ty) \leq d(Tg(x), Ty) + d(x, Ty) + d(Ty, Ty),$ $d(Tg(x), Ty)$

for all $x \in X$ and $y \in Y$, where $g \in G,$ then ST has a unique fixed point $z \in X$ and TS has a unique fixed point $w \in Y.$ Further, $TS = w$ and $ST = z.$
Proof. Let \(x_0 \) be an arbitrary point in \(X \). Define two sequences \(\{x_n\} \) and \(\{y_n\} \) in \(X \) and \(Y \) respectively, as follows:

\[
x_n = (ST)^{n-1}x_0, \quad y_n = T(ST)^{n-1}x_0
\]

for \(n = 1, 2, \ldots \). By (D), we have

\[
d(x_n, x_{n+1}) = d((ST)^{n-1}x_0, (ST)^{n-1}x_0)
\]

\[
= d((ST)^{n-1}x_0, (ST)^{n-1}x_0)
\]

\[
= d(y_n, y_{n+1}) \leq g(c(y_n, y_{n+1}), d(x_n, x_{n+1}), c(y_n, x_n), d(x_n, x_{n+1}), d(x_n, x_{n+1}), d(x_n, x_{n+1}))
\]

Thus, by (g'2), we have

\[
d(x_n, x_{n+1}) \leq c(y_n, y_{n+1})
\]

for some \(0 \leq c_1 < 1 \). Similarly, by (D),

\[
e(x_n, y_{n+1}) \leq e(x_n, y_{n+1})
\]

\[
= e((ST)^{n-1}x_0, (ST)^{n-1}x_0)
\]

\[
= e(y_n, y_{n+1}) \leq g(c(y_n, y_{n+1}), d(x_n, x_{n+1}), c(y_n, x_n), d(x_n, x_{n+1}), d(x_n, x_{n+1}))
\]

Thus, by (g'2), we have

\[
e(y_n, y_{n+1}) \leq e(y_n, y_{n+1})
\]

for some \(0 \leq c_2 < 1 \). Therefore, by (F) and (G),

\[
d(x_n, x_{n+1}) \leq \cdots \leq c_n d(x_1, x_n)
\]

which implies that \(\{x_n\} \) is a Cauchy sequence in \((X, d)\) since \(0 < c_1 < 1 \) and \(\cdots \). Since \((X, d)\) is complete, it converges to a point \(z \) in \(X \). Similarly, the sequence \(\{y_n\} \) is also a Cauchy sequence in \((Y, e)\) with the limit \(w \). By (D),
again, we have

$$e^2(Tz, y_{n+1}) = e^2(Tz, TSy_n)$$

and so, $e(Tz, w) = 0$, i.e., $Tz = w$. On the other hand, by (E) we have

$$d^2(Su_n, x_{n+1}) = d^2(Su_n, (ST)^{n-1} x_n)$$

and so, $d(Su_n, z) = 0$, i.e., $Su_n = z$. Therefore, we have $STz = Sw = z$ and $TSw = Tz = w$, which means that the point z is a fixed point of ST and the point w is a fixed point of TS.

To prove the uniqueness of the fixed point z, let z' be the second fixed point of ST. By (D), we have

$$d^2(z', z') = d^2(STz', STz)$$

which, by (g'-2), implies that

$$d(z', z) = c_{ST}(Tz', Tz)$$

for some $0 < c_3 < 1$. Similarly, by (D), we have

$$e^2(Tz, Tz') = e^2(Tz, TSz)$$
Fixed points in two metric spaces

Thus, by (q-2), it follows that

\[(K)\]

\[c(tx, tx') \leq c(d(x', z))\]

for some 0 \leq c < 1. Therefore, by (J) and (K),

\[d(y, x') \leq c \cdot c(tz, tx') \leq c^2 d(y, x')\]

which implies that \(d(z, z') = 0\), i.e., \(z = z'\), since 0 \leq c \leq 1 and so the uniqueness of the fixed point \(n\) of \(ST\) follows. Similarly, the point \(w\) is also a unique fixed point of \(TS\). On the other hand, if these exist a positive integer \(n\) such that \(d(x_n, x_{n+1}) = 0\) or \(d(y_n, y_{n+1}) = 0\), then the theorem is evident. This completes the proof.

As immediate consequences of Theorem 1, we have the following:

Corollary 2. Let \((X, d)\) and \((Y, e)\) be two complete metric spaces. If \(T\) is a mapping from \(X\) into \(Y\) and \(S\) is a mapping from \(Y\) into \(X\) satisfying the following conditions:

\[(L)\]

\[c^2(TX, TSX) \leq c_1 \cdot \max\{d(x, SY)\} + \min\{d(x, SY)\}, e(y, TSX)\]

\[(M)\]

\[d^2(SY, STX) \leq c_2 \cdot \max\{e(y, TZX)\} + \min\{e(y, TZX)\}, d(x, STX)\]

d for all \(x \in X\) and \(y \in Y\), where \(0 < c, c_1 < 1\), then \(ST\) has a unique fixed point in \(X\) and \(TS\) has a unique fixed point \(w\) in \(Y\). Further, \(TS = w\) and \(ST = z\).

Proof. Define a function \(g : [0, +\infty) \rightarrow (0, +\infty)\) by

\[g(u, v, w) = u \cdot c \cdot \max\{u, v, w\}\]

for all \((u, v, w) \in [0, +\infty)\), where \(0 < c < 1\). Then, from Example 1 (2) follows that \(g \in \mathcal{G}\) and, by Theorem 1, the corollary follows.

Corollary 3. Let \((X, d)\) and \((Y, e)\) be two complete metric spaces. If \(T\) is a mapping from \(X\) into \(Y\) and \(S\) is a mapping from \(Y\) into \(X\) satisfying the following conditions:

\[(N)\]

\[c^2(TX, TSX) \leq d(x, SY) + b_1 d(x, SY) + d(x, TSX)\]

\[(O)\]

\[d^2(SY, STX) \leq a_2 e(y, TZX) + b_2 e(y, TZX) + c_2 d^2(SY, STX)\]

d for all \(x \in X\) and \(y \in Y\), where \(a_1, a_2, b_1, b_2, c_1, c_2 \in [0, +\infty]\) with \((a_1 + b_1 + c_1)(a_2 + b_2 + c_2) < 1\), then \(ST\) has a unique fixed point \(w\) in \(X\) and \(TS\) has a unique fixed point \(w\) in \(Y\). Further, \(TS = w\) and \(ST = z\)
Proof. Define a function \(g : [0, +\infty]^3 \to [0, +\infty) \) by
\[
g(a, v, w) = aw + bw + cw
\]
for all \(a, v, w \in [0, +\infty) \), where \(a, b, c \in [0, +\infty) \). Then, from Example 1 (3), follows that \(g \in \mathcal{G} \) and, by Theorem 1, the corollary follows.

Corollary 4. Let \((X, d)\) and \((Y, e)\) be two complete metric spaces. If \(T \) is a mapping from \(X \) into \(Y \) and \(S \) is a mapping from \(Y \) into \(X \) satisfying the following conditions:
\[
\begin{align*}
(P) & \quad d^2(Tx, TSy) \leq a_2d_2^2(z, Sz) + b_2d_2^2(y, Ty) + c_2d_2^2(y, TSz), \\
(Q) & \quad d^2(Sy, STz) \leq a_2d_2^2(y, Ty) + b_2d_2^2(x, Sz) + c_2d_2^2(x, STz)
\end{align*}
\]
for all \(x \in X \) and \(y \in Y \), where \(0 \leq a_2, b_2, c_2 < 1 \), then \(ST \) has a unique fixed point \(z \in X \) and \(TS \) has a unique fixed point \(w \in Y \). Further, \(Tx = w \) and \(Sw = z \).

Proof. Define a function \(g : [0, +\infty]^3 \to [0, +\infty) \) by
\[
g(u, v, w) = au^2 + bv^2 + cw^2
\]
for all \(u, v, w \in [0, +\infty) \), where \(0 < a, b, c < 1 \). Then \(g \in \mathcal{G} \) and, by Theorem 1, the corollary follows.

If \((X, d)\) and \((Y, e)\) are the same metric spaces, then by Theorem 1, we have the following:

Theorem 5. Let \((X, d)\) be a complete metric space. If \(S \) and \(T \) are mappings from \(X \) into itself satisfying the following conditions:
\[
\begin{align*}
(R) & \quad d^2(Tx, TSy) \leq g(d(x, Sz)d(y, Ty), d(z, Sz)d(y, TSz)), \\
(S) & \quad d^2(Sy, STz) \leq g(d(y, Ty)d(x, Sz), d(y, TSz)d(x, STz))
\end{align*}
\]
for all \(x, y \in X \), where \(g \in \mathcal{G} \), then \(ST \) has a unique fixed point \(z \in X \) and \(TS \) has a unique fixed point \(w \in Y \). Further, \(Tz = w \) and \(Sw = z \) and, if \(z = w \), then \(z \) is the unique common fixed point of \(T \) and \(S \).

Corollary 6. Let \((X, d)\) be a complete metric space. If \(S \) and \(T \) are mappings from \(X \) into itself satisfying the following conditions:
\[
\begin{align*}
(T) & \quad d^2(Tx, TSy) \leq c_1 \max\{d(x, Sz)d(y, Ty), d(x, Sz)d(y, TSz), \\
(U) & \quad d^2(Sy, STz) \leq c_2 \max\{d(y, Ty)d(x, Sz), d(y, TSz)d(x, STz), \\
& \quad d(z, Sz)d(x, STz))
\end{align*}
\]
for all \(x, y \in X \), where \(0 \leq c_1, c_2 < 1 \), then \(ST \) has a unique fixed point \(z \in X \) and \(TS \) has a unique fixed point \(w \in X \). Further, \(Tz = w \) and \(Sw = z \) and, if \(z = w \), then \(z \) is the unique common fixed point of \(S \) and \(T \).
Acknowledgement. Authors are very grateful to Dr. B. Fisher for valuable comments yielding the improvement of this paper. The present studies were supported in part by the Basic Science Research Institute Program, Ministry of Education, Korea, 1997, Project No. BSRI-97-1405, and RUBS of Dongguk University, 1997.

References

Received by the editors July 12, 1997.