TRIANGULAR SOLUTIONS OF BOOLEAN EQUATIONS

Dragič Banković
Faculty of Science, University of Kragujevac
P.O. Box 60, 34000 Kragujevac, Yugoslavia

Abstract
We give an algorithm which determines the formulas of general reproductive solutions of a given Boolean equation in triangular form. The algorithm also makes simpler formulas of these solutions. This algorithm also does a simplification of the formulas of these solutions.

AMS Mathematics Subject Classification (1991): 03G05
Key words and phrases: Boolean algebra, Boolean equation

Our basic terminology, related to Boolean equations, follows Rudeanu's book [6]. For everything about Boolean equations, not given here, see also [6].

Let $B = (B, \cup, \cap, ^\prime, 0, 1)$ be a Boolean algebra, n be a natural number and $p = 2^n - 1$. Further, let $\{A_0, A_1, \ldots, A_p\} = \{0, 1\}^n$. If $A \in \{0, 1\}^n$ then the j-th coordinate of A will be denoted by $(A)_j$, i.e. $A = ((A)_1, \ldots, (A)_n)$.

We shall also use the notation:

$$T_k = (t_1, \ldots, t_k) \ (k = 1, \ldots, n).$$

Especially, if $k = n$ we shall use the notation:

$$T = (t_1, \ldots, t_n) \quad \text{and} \quad X = (x_1, \ldots, x_n).$$
Definition 1. Let $f, \Phi_1, \ldots, \Phi_n : B^n \to B$ be Boolean functions and $\Phi = (\Phi_1, \ldots, \Phi_n)$. The formula

$$X = \Phi(T)$$

or, in a scalar form

$$x_j = \Phi_j(t_1, \ldots, t_n) \quad (j = 1, \ldots, n)$$

defines a general solution of the consistent Boolean equation $f(X) = 0$ if and only if

$$(\forall X \in B^n)(\exists T \in B^n)(f(X) = 0 \leftrightarrow (\exists T \in B^n)X = \Phi(T)).$$

Definition 2. Let $x \in B$. Then

$$x^1 = x, \quad x^0 = x'.$$

If $X = (x_1, \ldots, x_n) \in B^n$ and $A = (a_1, \ldots, a_n) \in \{0, 1\}^n$ then

$$X^A = x_1^{a_1} \cdots x_n^{a_n}.$$

Theorem 1. \cite{[6]} The function $f : B^n \to B$ is Boolean if and only if it can be written in the canonical disjunctive form

$$f(X) = \bigcup_{k=0}^n f(A_k)X^A_k.$$

Theorem 2. \cite{[6]} Let $f : B^n \to B$ be a Boolean function. The equation $f(X) = 0$ is consistent if and only if

$$\prod_{k=0}^n f(A_k) = 0.$$

Theorem 3. \cite{[6]} Let $f : B^n \to B$ be a Boolean function. If $f(X) = 0$ is consistent, then the formula

$$X = \bigcup_{k=0}^p \left(f(A_{1k})A_{1k} \cup f(A_{2k})f'(A_{1k})A_{2k} \cup \left(f(A_{1k})f'(A_{1k})f'(A_{2k})A_{3k} \cup \cdots \cup f(A_{pk})f(A_{1k})f(A_{2k}) \cdots f'(A_{(p-1)k})A_{1k} \right) \right)$$

(1)
defines a general solution of $f(X) = 0$, under conditions

$(i_{a,0}, i_{a,1}, \ldots, i_{a,p})$ are permutations of \(\{0,1,\ldots,p\}\)

and

$(i_{b,0}, i_{b,1}, \ldots, i_{b,p})$ is a permutation of \(\{0,1,\ldots,p\}\).

Bearing in mind the method of successive eliminations, it is known that
every consistent Boolean equation $f(x_1, \ldots, x_n) = 0$ has a triangular general
reproductive solution of the form

$$
z_1 = g_1(t_1) \\
z_2 = g_2(t_1, t_2) \\
\vdots \\
z_n = g_n(t_1, t_2, \ldots, t_n).
$$

We shall prove that the vector $A_{i_{a,b}}$ in Theorem 3 can be chosen such that
the solution (1) is triangular.

Definition 3. Let $A = (a_1, \ldots, a_n) \in \{0,1\}^n$. We define a sequence

$$B(A) = B_0(A), B_1(A), \ldots, B_p(A)$$

in the following way:

(I) $B_0(A) = (a_1, \ldots, a_n)$

$B_1(A) = (a_1, \ldots, a_{n-1}, a'_n)$

(II) for every $k \in \{1, \ldots, n-1\}$

$B_{2k}(A) = (a_1, \ldots, a'_{n-k}, D_k(0))$

$B_{2k+1}(A) = (a_1, \ldots, a'_{n-k}, D_k(1))$

\vdots

$B_{2k+2^{n-1}-1}(A) = (a_1, \ldots, a'_{n-k}, D_k(2^k - 1))$

where $D_k(s)$ is the k-tuple of the binary digits of the number $s \in \{0,1,\ldots,2^k-1\}$
in binary expansion.

Lemma 1. Let $A = (a_1, \ldots, a_k, a_{k+1}, \ldots, a_n) = (E_k, F_{n-k}) \in \{0,1\}^n$. Then

for $r \geq 0$

$$B_{2^{k+r}}(E_k, F_{n-k})$$

does not depend on F_{n-k}.
Proof. Bearing in mind Definition 1 we have

\[E_{2m+k}(e_1, e_{2m+k}) = (e_1, \ldots, e_m, D_{n-m}(e)) \]

(for some \(m \) and some \(i \), where \(m \leq k \) and \(0 \leq i \leq 2^{n-m} - 1 \))

\[= E_{2m+s+i}(e_1, \ldots, e_m, D_{n-m}(e)) \quad \Box \]

Theorem 4. Let \(f(X) = 0 \) be a consistent Boolean equation. The formula

\[
X = \bigcup \left\{ f(B_0(A))B_0(A) \cup f(B_1(A))f(B_1(A))B_1(A) \cup \cdots \right\}
\]

(2)

\[
\cup f(B_0(A))f(B_1(A)) \cdots f(B_s(A))B_s(A) \right] T^A
\]

defines a general solution of \(f(X) = 0 \).

Proof. Since

\[\{B_0(A), B_1(A), \ldots, B_s(A)\} = \{0, 1\}^n \]

and

\[\{B_0(A) | A \in \{0, 1\}^n\} = \{A | A \in \{0, 1\}^n\} = \{0, 1\}^n \]

the conditions of Theorem 3 are fulfilled.

Remark 1. Since the equation \(f(X) = 0 \) is consistent i.e.

\[f(B_0(A)) f(B_1(A)) \cdots f(B_s(A)) = 0 \]

we can omit \(f(B_s(A)) \) from \(f(B_0(A)) f(B_1(A)) \cdots f(B_s(A)) \) because of \(ab = 0 \Rightarrow ab = a \).

Remark 2. The formula (1) can be written as

\[
X = \bigcup \left\{ \bigwedge_{i=0}^{s} f(B_0(A))B_i(A) \bigwedge_{j=0}^{i} f(B_j(A)) \right\} T^A
\]

i.e. we can write

\[
x_k = \bigcup \left\{ \bigwedge_{i=0}^{s} f(B_0(A))B_i(A) \bigwedge_{j=0}^{i} f(B_j(A)) \right\} T^A \quad (k = 1, \ldots, n;)
\]

(we assume that \(\bigwedge_{j=0}^{i} f(B_j) = 1 \)).
Lemma 2. Let \(A = (a_1, \ldots, a_k, a_{k+1}, \ldots, a_n) = (E_k, F_{n-k}) \in \{0,1\}^n \). Then

\[
(4) \quad \bigcup_{i=0}^{p} f'(B_i(E_k, F_{n-k}))(B_i(E_k, F_{n-k})) = \prod_{j=0}^{i-1} f(B_j(E_k, F_{n-k}))
\]

does not depend on \(F_{n-k} \).

Proof. The union (4) can be written as the union of two unions

\[
\bigcup_{i=0}^{2^{n-k}-1} f'(B_i(E_k, F_{n-k}))(B_i(E_k, F_{n-k})) = \bigcup_{i=0}^{2^{n-k}-1} f'(B_i(E_k, F_{n-k}))(B_i(E_k, F_{n-k})) \prod_{j=0}^{i-1} f(B_j(E_k, F_{n-k}))
\]

\[
\bigcup_{i=2^{n-k}}^{p} f'(B_i(E_k, F_{n-k}))(B_i(E_k, F_{n-k})) = \prod_{j=0}^{i-1} f(B_j(E_k, F_{n-k})).
\]

Note that

\[
(5) \quad i < 2^{n-k} \Rightarrow (B_i(E_k, F_{n-k})) = e_k,
\]

because of Definition 3. The first union can be written as

\[
\bigcup_{i=0}^{2^{n-k}-1} f'(B_i(E_k, F_{n-k}))(B_i(E_k, F_{n-k})) = e_k \bigcup_{i=0}^{2^{n-k}-1} f'(B_i(E_k, F_{n-k})) \prod_{j=0}^{i-1} f(B_j(E_k, F_{n-k}))
\]

(because of (5))

\[
= e_k \bigcup_{i=0}^{2^{n-k}-1} f'(B_i(E_k, F_{n-k}))
\]

(because of \(a_1' \cup a_2' \cup \cdots \cup a_{k'}' = a_1' \cup a_2' \cup \cdots \cup a_{k'}' \))

\[
= e_k \bigcup_{i=0}^{2^{n-k}-1} f'(E_k, D_{n-k}(i))
\]

(by Definition 3).
The second union can be written as

\[\bigcup_{i=2^{n-k}}^{p} f'(B_i(E_k, F_{n-k}))(B_i(E_k, F_{n-k})) a \prod_{j=0}^{i-1} f(B_j(E_k, F_{n-k})) \]

\[= \bigcup_{i=2^{n-k}}^{p} f'(B_i(E_k, F_{n-k}))(B_i(E_k, F_{n-k})) b \prod_{j=0}^{i-1} f(B_j(E_k, F_{n-k})) \]

\[\cdot \prod_{j=0}^{2^{n-k}-1} f(B_j(E_k, F_{n-k})) \prod_{j=2^{n-k}}^{i-1} f(B_j(E_k, F_{n-k})) \]

\[\text{we assume that} \prod_{j=2^{n-k}}^{i-1} f(B_j) = 1 \]

\[= \prod_{j=0}^{2^{n-k}-1} f(E_k, D_{n-k}(j)) \bigcup_{i=2^{n-k}}^{p} f'(B_i(E_k, F_{n-k}))(B_i(E_k, F_{n-k})) b \]

\[\cdot \prod_{j=2^{n-k}}^{i-1} f(B_j(E_k, F_{n-k})). \]

Since the latter union contains only the members of the form

\[B_{2^{n-k}+i}(E_k, F_{n-k}) \]

where \(r \geq 0 \), it does not depend of \(F_{n-k} \), because of Lemma 1.

Therefore (4) does not depend on \(F_{n-k} \).

Remark 3. Since

\[\bigcup_{i=0}^{p} f'(B_i(E_k, F_{n-k}))(B_i(E_k, F_{n-k})) a \prod_{j=0}^{i-1} f(B_j(E_k, F_{n-k})) \]

does not depend on \(F_{n-k} \), we have

\[\bigcup_{i=0}^{p} f'(B_i(E_k, F_{n-k}))(B_i(E_k, F_{n-k})) a \prod_{j=0}^{i-1} f(B_j(E_k, F_{n-k})) \]

\[= \bigcup_{i=0}^{p} f'(B_i(E_k, G^*_{n-k}))(B_i(E_k, G^*_{n-k})) a \prod_{j=0}^{i-1} f(B_j(E_k, G^*_{n-k})), \]

where \(G^*_{n-k} \) is an arbitrary but fixed element from the set \(\{0, 1\}^{n-k} \).
Theorem 5. Let \(f(X) : B^n \rightarrow B \) be a Boolean function. If the equation \(f(X) = 0 \) is consistent, then the formulas

\[
x_k = \bigcup_{E_k \in \{0,1\}^k} \left[\bigcup_{i=0}^{p} f'(B_i(E_k, G_{n-k}))(B_i(E_k, G_{n-k})) \prod_{j=0}^{i-1} f(B_j(E_k, G_{n-k})) \right] T_k^i
\]

\((k = 1, \ldots, n)\)

defines a general solution of \(f(X) = 0 \), where \(G_{n-k} \) are arbitrary but fixed elements from the sets \(\{0,1\}^{n-k} \) \((k = 1, \ldots, n)\).

Comment. Specifically, we can take \(G_{n-k} = (0, \ldots, 0) \).

Proof. In accordance with (3) we have for \(k = 1, \ldots, n \)

\[
x_k = \bigcup_{A} \left[\bigcup_{i=0}^{p} f'(B_i(A))(B_i(A)) \prod_{j=0}^{i-1} f(B_j(A)) \right] T^A
\]

\[
= \bigcup_{E_k \in \{0,1\}^k} \bigcup_{F_{n-k} \subset \{0,1\}^{n-k}} \left[\bigcup_{i=0}^{p} f'(B_i(E_k, F_{n-k}))(B_i(E_k, F_{n-k})) \right]
\cdot \prod_{j=0}^{i-1} f(B_j(E_k, F_{n-k}))
\]

\[
\cdot \prod_{j=0}^{i-1} f(B_j(E_k, F_{n-k})) \right] T_k^i T_{n-k}^F
\]

\((T_k = (t_1, \ldots, t_k), \ T_{n-k} = (t_{k+1}, \ldots, t_n))\)

\[
= \bigcup_{E_k \in \{0,1\}^k} \bigcup_{F_{n-k} \subset \{0,1\}^{n-k}} \left[\bigcup_{i=0}^{p} f'(B_i(E_k, G_{n-k}))(B_i(E_k, G_{n-k})) \right] T_k^i T_{n-k}^F
\]

\[
= \bigcup_{E_k \in \{0,1\}^k} \left[\bigcup_{i=0}^{p} f'(B_i(E_k, G_{n-k}))(B_i(E_k, G_{n-k})) \right] T_k^i
\]

\((because \ \bigcup_{E_k \in \{0,1\}^k} T_{n-k}^F = 1) \).

Definition 4. If \(f : B^n \rightarrow B \) be a Boolean function and \(A \in \{0,1\}^n \), then the term \(S_k(f, A) \) is defined by the following algorithm:

for \(i = 0 \) to \(p \) do

If \((B_i(A))_k = 0\) then
\[\text{if } (B_{i+1}(A))_k = 0 \text{ then write } (f(B_i(A))) \]
\[\text{else write } f(B_i(A)) \]
\[\text{else if } (\exists m > i)(B_m(A))_k = 1 \text{ then write } f'(B_i(A)) \cup \]
\[\text{else write } f'(B_i(A)), ... \]
("write" \(f'(B_i(A))\)...) means "write \(f'(B_i(A))\) and close all brackets").

Comment. The term \(S_k(f, (E_k, G^n_{n-k}))\) contains every member
\[f(A_0), f(A_1), ..., f(A_p) \]
at most once, because of Definition 4 and
\[\{B_0(A), B_1(A), ..., B_q(A)\} = \{0,1\}^n. \]

Lemma 3. If \(f(X): B^n \to B\) be a Boolean function and \(A \in \{0,1\}^n\) then
\[\bigcup_{i=0}^{p} f'(B_i(A))f(B_i(A))_k \cap \bigcap_{j \neq k} f(B_j(A)) = S_k(f, A). \]

The proof follows from Definition 4, distributive law and
\[a' \cup zb = a' \cup b. \]

Theorem 6. Let \(f(X): B^n \to B\) be a Boolean function. If the equation
\[f(X) = 0 \]
is consistent then the formulas
\[z_k = \bigcup_{E_k(A) \in \{0,1\}^n} S_k(f, (E_k, G^n_{n-k}))^{T_{k-1}} \quad (k = 1, ..., s) \]
define a general solution of \(f(X) = 0\), where \(G^n_{n-k}\) are arbitrary but fixed elements from the set \(\{0,1\}^{n-k}\) \((k = 1, ..., n)\).

Proof. The proof follows from Theorem 5 and Lemma 3.

Comment. In accordance with Definition 4, it can be remarked that the algorithm described in Theorem 6 simplifies the formulas of be solutions given in Theorem 3. Namely, the coefficient \(A_{k,j}\) appears in the term \(S_k(f, A)\) at most once.
Example 2. Determine a triangular general solution of the consistent Boolean equation $f(x_1, x_2) = 0$.

$$x_1 = S(f, (0, G_1))t_1 \cup S(f, (1, G_1))t_1 = S(f, (0, 0))t_1^0 \cup S(f, (1, 0))t_1 = (\text{we take } G_1 = 0)$$

$$= (f(0, 0)f(0, 1)(f'(0, 1) \cup f'(1, 1)))t_1^0$$

$$\cup (f'(0, 0) \cup f'(1, 1))t_1$$

$$x_2 = S(f, (0, 0))t_2^0 \cup S(f, (0, 1))t_2^1$$

$$\cup S(f, (1, 0))t_2^0 \cup S(f, (1, 1))t_2$$

$$= (f(0, 0)f(0, 1) \cup f(1, 0)f'(1, 1)))t_2^0$$

$$\cup (f(0, 1) \cup f(0, 0)f(1, 1)f'(1, 1)))t_2^1$$

$$\cup (f(1, 1) \cup f(0, 0)f'(0, 0))t_2^0$$

$$\cup (f'(1, 1) \cup f(1, 0)f'(0, 1))t_2^1.$$

References

[4] Prešić, S., Une méthode de résolution des équations dont toutes les solution

Received by the editors March 16, 1996.