THE SPACE OF FUNCTIONS WITH A LIMIT AT EACH POINT

Miloš S. Kurilić
Institute of Mathematics, Faculty of Science, University of Novi Sad
Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

We consider the set \(\Lambda(X, Y) \) of functions \(f: X \to Y \) which have a limit at each point of \(X \). If \(X \) is a compact space, \(\Lambda(X, Y) \) is a Banach algebra. The representation of bounded linear functionals on \(\Lambda(X, Y) \) is given.

Key words and phrases: Banach algebras, representation theorems, bounded functionals.

1. Introduction

In all further considerations, \((X, \mathcal{O}_X)\) will denote a topological space without isolated points, while \((Y, \mathcal{O}_Y)\) will be a Hausdorff space. These conditions will ensure the uniqueness of the limit \(\lim_x f \), where \(f: X \to Y \) and \(x \in X \). We consider the set

\[
\Lambda(X, Y) = \{ f \in Y^X : \forall x \in X \exists y_x \in Y \ y_x = \lim_x f \}
\]

which is larger than \(C(X, Y) \). This is shown by the following well-known examples.
Example 1.1. Let \(Q = \{ q_n : n \in \mathbb{N} \} \) be the space of rationals and let \(f : Q \to R \) be defined by \(f(q_n) = 1/n, \ n \in \mathbb{N} \). Then, for each \(q \in Q \) we have \(\lim_{x \to q} f(x) = 0 \neq f(q) \). So, \(f \) is discontinuous at each point although \(f \in \Lambda(Q, R) \).

Example 1.2. The function \(f : R \to R \) given by:

\[
f(x) = \begin{cases}
1/n & \text{if } x = q_n, \ n \in \mathbb{N}; \\
0 & \text{if } x \in R \setminus Q
\end{cases}
\]

is continuous at each point of \(R \setminus Q \) and it is discontinuous at each rational point. Moreover, \(\lim_{x \to \infty} f(x) = 0 \) for all \(x \in R \), thus \(f \in \Lambda(R, R) \).

Theorem 1.1. Suppose \((X, O_X)\) is a \(T_1 \)-space, \((Y, O_Y)\) is a regular space, \(D \subset X \), \(D' = X \) and \(f : D \to Y \) where

\[
\forall x \in X \ \exists y_x \in Y \ y_x = \lim_{t \to x}^{(0)} f(t).
\]

Then, the function \(F : X \to Y \) defined by \(F(x) = y_x \), for all \(x \in X \), is continuous.

Proof. a) By the assumption for each \(x \in X \) there is \(y_x \in Y \) such that

\[
(1) \quad \forall W \in \mathcal{U}(y_x) \ \exists V \in \mathcal{U}(x) \ f(V \setminus \{x\} \cap D) \subset W.
\]

Let us prove the continuity of \(f \) at arbitrary point \(x \in X \). Let \(U \in \mathcal{U}(y_x) \). Since \(Y \) is a regular space there is \(W \in \mathcal{U}(y_x) \) such that \(W \subset U \), and by (1), there exists \(V \in \mathcal{U}(x) \) satisfying

\[
(2) \quad d \in V \setminus \{x\} \cap D \Rightarrow f(d) \in W.
\]

Suppose that \(z \in V \) and \(f(z) = y_z \notin W \). Then \(y_z \in V \setminus W \in \mathcal{U}(y_x) \) and (1) gives \(G \in \mathcal{U}(x) \) such that

\[
(3) \quad d \in G \setminus \{z\} \cap D \Rightarrow f(d) \in V \setminus W.
\]

\(z = x \) would imply \(y_z = y_x \in W \cap V \setminus W = \emptyset \), therefore \(z \neq x \) and \(z \in G \cap V \setminus \{z\} \in \mathcal{U}(x) \). Since \(D' = X \) there is a \(d \in D \cap G \cap V \setminus \{z, x\} \) and from (2) and (3) it follows that \(f(d) \in W \cap V \setminus W = \emptyset \) which is impossible. Thus \(F(V) \subset W \subset U \) and \(F \) is continuous at the point \(e \). \(\square \)

As a special case of the previous theorem, for \(D = X \), we have
Corollary 1.1. If \((X, \mathcal{O}_X)\) is a \(T_1\)-space, \((Y, \mathcal{O}_Y)\) is a regular space and \(f \in \Lambda(X, Y)\), then the function \(F : X \to Y\) given by \(F(x) = y_x\) is continuous.

Example 1.3. If \(f\) is the function from the Example 1.1, then \(F(x) = 0 \neq f(x)\), for all \(x \in X\).

Theorem 1.2. Let \((Y, d)\) be a metric space and \(f \in \Lambda(X, Y)\). Then,

a) For all \(r > 0\), the set \(\Delta_r = \{z \in X \mid d(y_z, f(z)) > r\}\) has no accumulation points in \(X\).

b) \(\Delta_r\) is a closed, discrete subspace of \(X\) and \(|\Delta(f)| \leq e(X)\), where \(\Delta(f) = \{x \in X : f\) is discontinuous at \(x\}\) and \(e(X) = \sup\{|D| : D \subseteq X \text{ is closed and discrete}\}\).

c) If \(X\) is a separable metrizable space, then \(|\Delta(f)| \leq \omega\).

d) For all \(r > 0\), \(\Delta_r\) is a nowhere dense set.

e) If the space \(X\) is metrizable with a complete metric, then the mapping \(f\) is continuous on a set of the second category.

f) If \((X, O)\) is a compact space, then \(\Delta_r\) is a finite set (for each \(r > 0\)) and \(f\) is a bounded function.

Proof. a) Suppose that for some \(r > 0\) we have \(\Delta_r \neq \emptyset\), i.e.

\[
\exists x \in X \quad \forall U \in \mathcal{U}(x) \quad \exists y \in U \setminus \{x\} \cap \Delta_r.
\]

Then, there is a net \(< x_U | U \in \mathcal{U}(x) \to x >\). By the continuity of \(f\) from Corollary 1.1 we have \(< y_{x_U} | U \in \mathcal{U}(x) \to y_x\), hence there is \(W \in \mathcal{U}(x)\) such that

\[
\forall G \in \mathcal{U}(x) | G \subseteq W \Rightarrow d(y_{x_U}, y_x) < r/2.
\]

Since \(\lim_{U} f = y_x\), there is \(V \in \mathcal{U}(x)\) satisfying

\[
\forall t \in V \setminus \{x\} \quad f(t), y_x < r/2.
\]

If \(O \in \mathcal{U}(x)\) and \(O \subseteq V \cap W\), then \(x_0 \in W \cap V \setminus \{x\}\) and by (5) and (6)

\[
d(y_{x_0}, f(x)) \leq d(y_{x_0}, y_x) + d(y_x, f(x_0)) < r.
\]

A contradiction to \(x_0 \in \Delta_r\).
b) From (f), for each \(x \in \Delta \), there is \(U \in \mathcal{U}(x) \) such that \(U \cap \Delta = \{ x \} \), so the discreteness is verified. Since \(\bar{\Delta} = \Delta \cup (\mathcal{U}_z \setminus \Delta_z) \), \(\Delta_1 \) is closed. Finally, for all \(n \in \mathbb{N} \) we have \(| \Delta_1 / \mathcal{N} | \leq e(X) \), hence \(| \Delta(f) | = 1 | \bigcup_{n \in \mathbb{N}} \Delta_1 / \mathcal{N} | \leq \omega_1(X) = e(X) \).

c) In a separable metric space we have \(e(X) = d(X) = \omega \).

d) Suppose that \(x \in \text{int}\Delta_1 = \text{int}\Delta_1 \). Choose \(U \in \mathcal{U}(x) \) such that \(U \cap \Delta_1 = \{ x \} \). Then \(U \cap \text{int}\Delta_1 = \{ x \} \), which is impossible because \(X \) has no isolated points.

e) Follows from (d), \(\Delta(f) = \bigcup_{n \in \mathbb{N}} \Delta_1 / \mathcal{N} \), and the Baire Category Theorem.

f) \(\Delta_1 \) is finite because of (a). Let \(\Delta_1 = \{ x_1, \ldots, x_k \} \) and let \(F \) be the function from Corollary 1.1. Then

\[
\forall z \in X \setminus \Delta_1 \quad d(f(z), F(z)) \leq 1
\]

and for all \(x, y \in X \setminus \Delta_1 \) we have

\[
d(f(x), f(y)) \leq d(f(x), F(x)) + d(F(x), F(y)) + d(F(y), f(y)) \leq 2 + \rho(F(X)).
\]

Now, \(F(X) \) is a compact set in \(Y \), thus it must be bounded. So, \(\rho(f(X \setminus \Delta_1)) \leq 2 + \rho(F(X)) < \infty \) and since \(f(\Delta_1) \) is a bounded set we have \(\rho(F(X)) < \infty \). \(\square \)

2. \(\Lambda(X, R) \) as a Banach algebra

The space of all bounded real-valued functions \(B(X, R) \) with the norm

\[
\| f \| = \sup_{x \in X} | f(x) |
\]

is a commutative Banach algebra with the unit.

Theorem 2.1. If \((X, O) \) is a compact, then \(\Lambda(X, R) \) is a Banach subalgebra of \(B(X, R) \).

Proof. By Theorem 1.2(f) we have \(\Lambda(X, R) \subset B(X, R) \). Also, if \(\lim_{x} f \) and \(\lim_{x} g \) exist, then \(\lim_{x} (af + bg) \) and \(\lim_{x} fg \) exist, hence \(\Lambda(X, R) \) is a subalgebra of \(B(X, R) \).
Let us prove that \(A(X, R) \) is a closed subset of \(B(X, R) \). Suppose \(f_n \mid n \in N \rightarrow f \), where \(f_n \in A(X, R) \), \(n \in N \), i.e.

\[
(7) \quad \forall \epsilon > 0 \exists n_0 \in N \forall n \forall \epsilon \quad f(x) - f(x) < \epsilon.
\]

A convergent sequence is bounded, thus there is \(M > 0 \) such that

\[
(8) \quad \forall \epsilon > 0 \exists n \in I \mid f_n(x) < M.
\]

Let \(x_0 \in X \) and \(y_{n_0}^\infty = \lim_{n \to \infty} f_n, n \in N \). Since \(\mid \mid \) is a continuous function, from (8) we have \(\lim_{n \to \infty} \mid f_n \mid = \mid y_{n_0}^\infty \mid \leq M \). So, \(\mid y_{n_0}^\infty \mid n \in N \) is a bounded real sequence.

Suppose that \(\alpha \) and \(\beta \) are the accumulation points of the sequence \(y_{n_0}^\infty \mid n \in N \). By (7), for \(\epsilon = \alpha - \beta \mid / 6 \) there is \(n_0 \in N \) satisfying

\[
(9) \quad \forall n \geq n_0 \forall \epsilon \in X \mid f_n(x) - f(x) \mid < \epsilon.
\]

Choose \(n_1, n_2 \geq n_0 \) such that \(\mid y_{n_1}^\infty - \alpha \mid, \mid y_{n_2}^\infty - \beta \mid < \epsilon \). Since \(y_{n_2}^\infty = \lim_{n \to \infty} f_n, i = 1, 2 \), there is \(U \in \mathcal{U}(x_0) \) such that for each \(x \in U \setminus \{x_0\} \) we have \(f_n(x) - y_{n_2}^\infty \mid < \epsilon \), \(i = 1, 2 \). Choose such \(x \in U \setminus \{x_0\} \) (this is possible because \(x_0 \) is not an isolated point). Now, we have: \(\mid \alpha - \beta \mid \leq \alpha - y_{n_2}^\infty + \mid y_{n_1}^\infty - f_n(x) \mid + \mid f_n(x) - f(x) \mid + \mid f(x) - f_n(x) \mid + \mid f_n(x) - y_{n_2}^\infty \mid + \mid y_{n_1}^\infty - y_{n_2}^\infty \mid - \beta \mid < 6 \epsilon = \alpha - \beta \mid \), a contradiction! The sequence \(y_{n_0}^\infty \mid n \in N \) converges.

Let \(y_{n_0}^\infty \mid n \in N \rightarrow y_{n_0} \). We will prove that \(\lim_{n \to \infty} f = y_{n_0} \), i.e.

\[
(10) \quad \forall \epsilon > 0 \exists U \in \mathcal{U}(x_0) \forall \epsilon \in U \setminus \{x_0\} \mid f(x) - y_{n_0} \mid < \epsilon.
\]

Given \(\epsilon > 0 \), for \(\epsilon = \epsilon' / 3 \), there is \(n_0 \in N \) satisfying (9). Let \(m \in N \) be such that \(m \geq n_0 \) and \(\mid y_{n_0}^\infty - y_{n_0} \mid < \epsilon \). Then, by (9)

\[
(10) \quad \forall \epsilon \in X \mid f_m(x) - f(x) \mid < \epsilon.
\]

Since \(y_{n_0}^\infty = \lim_{n \to \infty} f_n, \) there exists a neighbourhood \(U \in \mathcal{U}(x_0) \) such that

\[
\forall \epsilon \in U \setminus \{x_0\} \mid f_n(x) - y_{n_0}^\infty \mid < \epsilon.
\]

According to the previous inequalities, for each \(\epsilon \in U \setminus \{x_0\} \) we have

\[
\mid f(x) - y_{n_0} \mid \leq \mid f(x) - f_m(x) \mid + \mid f_m(x) - y_{n_0}^\infty \mid + \mid y_{n_0}^\infty - y_{n_0} \mid < 3 \epsilon = \epsilon',
\]

\]
and (10) is proved. Thus, for each \(x_0 \in X \) there exists \(\lim_{\alpha} f, \) hence \(f \in \Lambda(X, R). \)

Remark 2.1. Clearly, the Banach algebra \(\Lambda(X, R) \) is a Banach subalgebra of \(\Lambda(X, R). \) Moreover, for each \(F \in \Lambda(X, R) \) and \(r > 0 \) there is \(f \in B(F, r) \setminus \Lambda(X, R) \) given by

\[
\begin{align*}
 f(x) &= \begin{cases}
 F(x) & \text{for } x \neq x_0 \\
 F(x_0) + r/2 & \text{for } x = x_0
 \end{cases}
\end{align*}
\]

where \(x_0 \in X. \) \((B(F, r)\) is an open ball). So, \(\Lambda(X, R) \) is a nowhere dense subspace of \(\Lambda(X, R). \)

For a function \(\varphi : X \to R \) and \(r > 0 \) we define a subset \(S_{\varphi, r} \subset X \) as follows:

\[
S_{\varphi, r} = \{ x \in X \mid |\varphi(x)| > r \}.
\]

Also, we will observe the following vector space of real-valued functions:

\[
Z(X, R) = \{ \varphi \in X \mid S_{\varphi, r} \text{ is finite for all } r > 0 \}.
\]

Theorem 2.2. Let \((X, O)\) be a compact Hausdorff space. Then

\[
\Lambda(X, R) = Z(X, R) \oplus \Lambda(X, R).
\]

Proof. Let \(\varphi \in Z(X, R), x_0 \in X \) and \(\epsilon > 0. \) Then \(W = (X \setminus S_{\varphi, \epsilon/2}) \cup \{x_0\} \)

is a cofinite set containing \(x_0, \) hence \(W \in \mathcal{U}(x_0) \). Since \(|\varphi(x)| < \epsilon \) for all \(x \in W \setminus \{x_0\}, \) we have \(\lim_{\alpha} \varphi = 0. \) So, we proved \(Z(X, R) \subset \Lambda(X, R). \)

Moreover, \(Z(X, R) \) is a subspace of \(\Lambda(X, R) \) because for \(\varphi, \psi \in Z(X, R) \) and \(\alpha \in R \) there holds:

\[
S_{\varphi + \psi, r} \subset S_{\varphi, r/2} \cup S_{\psi, r/2} \quad \text{and} \quad S_{\alpha \varphi, r} \subset S_{\varphi, \alpha r/\epsilon}.
\]

Suppose \(\varphi \in C(X, R) \cap Z(X, R) \setminus \{0\}. \) Then, there is \(x \in X \) such that \(\varphi(x) > 0 \) (or \(\varphi(x) < 0 \)) and \(\varphi^{-1}(\varphi(x)/2, \infty)) = S_{\varphi, \varphi(x)/2} \) is an open, finite set. Since \(X \) has no isolated points this is impossible. Thus, \(Z(X, R) \cap Z(X, R) = \{0\}. \)

Let \(f \in \Lambda(X, R) \) and let \(F \in C(X, R) \) be the function defined in Corollary 1.1. By Theorem 1.2 (f) the set

\[
\Delta_r = \{ x \in X \mid F(x) - f(x) > r \} = S_{1-r, F_r}
\]

is finite for each \(r > 0. \) Thus, \(\varphi = f - F \in Z(X, R) \) and \(f = F + \psi. \) Each function \(f \in \Lambda(X, R) \) has the (unique) representation \(f = F + \psi, \) where \(F \in C(X, R) \) and \(\varphi \in Z(X, R). \) \(\square \)
3. Bounded linear functionals on \(\Lambda(I, R) \)

By \(I \) we will denote an arbitrary segment \([a,b]\) \(\subset R\). The proof of the following lemma is elementary.

Lemma 3.1. (i) \(\sup(A \cup B) = \max(\sup A, \sup B) \), for all nonempty, bounded
\(A, B \subset R \).

(ii) If \(F \in C(I, R) \) and \(P \subset I \) is a countable set, then \(\sup_{x \in P} | F(x) | =
\sup_{x \in \bigcup P} | F(x) | \). \(\square \)

Theorem 3.1. The functional \(\Psi : \Lambda(I, R) \to R \) is bounded and linear iff there are the unique bounded, linear functionals \(\Gamma : C(I, R) \to R \) and \(\Phi : Z(I, R) \to R \) such that for all \(F \in C(I, R) \) and all \(\varphi \in Z(I, R) \)

\[\Psi(F + \varphi) = \Gamma(F) + \Phi(\varphi). \]

Proof. (\(\Rightarrow \)) Consider the restrictions \(\bar{\Psi} = \Psi | C(I, R) \) and \(\Phi = \bar{\Psi} | Z(I, R) \).

(\(\Leftarrow \)) The linearity of \(\bar{\Psi} \) is obvious. Let \(F = F + \varphi \in \Lambda(I, R) \). By the previous lemma we have

\[\|F\| = \sup \{|F(x) + \varphi(x)| : x \in I\} \]

\[= \sup \{|F(x) + \varphi(x)| : x \in \varphi^{-1}(R \setminus \{0\})\} \cup \{|F(x)| : x \in \varphi^{-1}(0)\} \]

\[= \max \{ \sup_{\varphi(x) \neq 0} |F(x) + \varphi(x)|, \sup_{\varphi(x) = 0} |F(x)| \} \]

\[\geq \sup_{\varphi(x) = 0} |F(x)| = \sup_{x \in I} |F(x)| = \|F\| \]

because \(\{x \in I : |\varphi(x)| \neq 0\} = \bigcup_{n \in N} S_{\varphi_n} \) is a countable set. Also, \(\|\varphi\| \leq \|\varphi + F\| + \|F\| = \|\varphi\| + \|F\| \leq 2\|F\| \) and \(\bar{\Psi} \) is bounded because

\[\|\Psi(f)\| = \|\bar{\Psi}(F + \varphi)\| = |\Gamma(F) + \Phi(\varphi)| \leq \|\Gamma\|\|F\| + \|\Phi\|\|\varphi\| \leq \]

\[\leq (\|\Gamma\| + 2\|\Phi\|)\|F\|. \] \(\square \)

It is well-known that the set of real-valued functions \(\ell_1(I, R) \) defined by:

\[\ell_1(I, R) = \{h \in L^1 : (x \in I : h(x) \neq 0) \leq \omega \land \sum_{x \in I} |h(x)| < \infty \} \]
is a vector space with the norm
\[\|h\| = \sum_{x \in I} |h(x)|, \quad h \in \ell_1(I, R). \]

Also, the following statement is folklore.

Theorem 3.2. Let \(h \in \ell_1(I, R) \). Then the functional \(\Phi : Z(I, R) \to R \) given by
\[\Phi(\varphi) = \sum_{x \in I} \varphi(x)h(x), \quad \varphi \in Z(I, R) \]
is a bounded linear functional on \(Z(I, R) \).

Conversely, if \(\Phi : Z(I, R) \to R \) is a bounded, linear functional, then there is the unique \(h \in \ell_1(I, R) \) satisfying \(\|h\| = \|\Phi\| \) and (**) . □

If \(BV(I, R) \) is the space of all real-valued functions of bounded variation, whose domain is \(I = [a, b] \) and
\[NV_0(I, R) = \{v \in BV(I, R) : v(a) = 0 \land \forall z \in I \setminus \{a\} \quad v(z - 0) = v(z)\} \]
then we have the following consequence of Theorems 3.1, 3.2 and the well-known Riesz Theorem:

Theorem 3.3. Let \(\Psi : \Lambda(I, R) \to R \) be a bounded, linear functional. Then, there are the unique \(v \in NV_0(I, R) \) and \(h \in \ell_1(I, R) \) such that for each \(f = F + \varphi \in \Lambda(I, R) \)
\[\Psi(F + \varphi) = \int_I Fdv + \sum_{x \in I} \varphi(x)h(x). \] (11)

Conversely, for each \(v \in NV_0(I, R) \) and \(h \in \ell_1(I, R) \) the mapping \(\Psi \), defined by (11), is a bounded, linear functional on \(\Lambda(I, R) \). (\(\int_I Fdv \) is the Riemann-Stieljes integral). □

References

The space of functions...

Received by the editors May 17, 1994.