SYSTEM-PERMUTABLE FISCHER SUBGROUPS ARE INJECTORS

By ARNOLD FELDMAN
Franklin and Marshall College, Lancaster, Pennsylvania

[Received 23 February 2000. Read 12 October 2000. Published 16 October 2001.]

Abstract

In 1973 Dark provided the first example of a group and a Fitting set D such that the D-injectors are not normally embedded, and the first example of a group with Fischer D-subgroups that are not D-injectors, though they are injectors for another Fitting set, F. In their 1992 book Finite soluble groups, Doerk and Hawkes point out that in this second example the F-injectors are not even system-permutable, a weaker condition than normally embedded. Here we work with system-permutable Fischer F-subgroups. First, we show that a system-permutable Fischer F-subgroup that is also pronormal must be an F-injector. Then we prove that we can drop the requirement of pronormality and reach the same conclusion. Thus in Dark’s example the existence of Fischer D-subgroups that are not system-permutable is necessary for any Fischer D-subgroups not to be D-injectors.

Several authors have studied the question of when the Fischer F-subgroups and F-injectors of a finite solvable group are the same subgroups. Fischer [5] showed that if F is what is now called a Fischer set, then the F-subgroups of G are indeed F-injectors of G. A somewhat more general result of Anderson [1] is that when the Fischer F-subgroups of H are normally embedded in H for each subgroup H of G, the Fischer F-subgroups and F-injectors of G coincide. In [4], we came to the same conclusion if all the Fischer F subgroups of G are either subnormally embedded or locally pronormal in G. In [2], Dark provides the first example of a group and a Fitting set D such that the D-injectors are not normally embedded, and the first example of a group with Fischer D-subgroups that are not D-injectors, though they are injectors for another Fitting set, F. Doerk and Hawkes [3, 646] point out that in this latter example the F-injectors are not even system-permutable, a weaker condition than normally embedded. Doerk and Hawkes [3, VIII(4.9)] have also provided an example in which the Fischer F-subgroups are not injectors for any Fitting set. Here we work with system-permutable Fischer F-subgroups. First we show that a system-permutable Fischer F-subgroup that is also pronormal must be an F-injector. Then we prove that we can drop the requirement of pronormality and reach the same conclusion. Thus, in Dark’s example, the existence of Fischer D-subgroups that are not system-permutable is necessary for the Fischer D-subgroups not to be D-injectors. We begin with some key definitions. Definitions and notation will be as in [3], and all groups will be finite and solvable.

A subgroup A is pronormal in G if, for each g ∈ G, A is conjugate to Ag by an element of ⟨A, Ag⟩.

A subgroup A is system-permutable in G if there exists a Hall system Σ such that, for every subgroup B of Σ, AB is a subgroup of G.

*E-mail: A_Feldman@fandm.edu

A subgroup A is *normally embedded* in G if, for each prime r dividing A, a Sylow r-subgroup of A is a Sylow r-subgroup of some normal subgroup of G.

If F is a Fitting set of G, a subgroup U of G is a *Fischer F-subgroup* of G if U contains every F-subgroup of G that it normalises.

If F is a Fitting set of G and H is a subgroup of G, then F_H will denote the Fitting set $\{X \leq H : X \in F\}$. The subscript will be suppressed in all cases unless its inclusion clarifies the argument.

Lemma 1. If U is a proper subgroup of a finite group G, then there exists a maximal subgroup M of G such that $M = UK$, where K is normal in G.

Proof. Let $1 = N_0 < N_1 < N_2 < \ldots < G$ be a U-composition series for G, and let k be the smallest index such that $UN_k = G$. Let $M = UN_{k-1}$. Note that N_{k-1} is U-invariant and normal in N_k, so N_{k-1} is normal in $G = UN_k$. Now suppose $M \leq X \leq G$. Then $U \leq M \leq X$, so X is U-invariant. Also, $N_{k-1} \leq X$, so $N_k = X \cap N_k \leq N_{k-1}$. Because $X \cap N_k$ is U-invariant and N_k/N_{k-1} is U-irreducible, $X \cap N_k = N_k$ or $X \cap N_k = N_{k-1}$. Thus $X = X \cap G = X \cap UN_k = U(X \cap N_k) = G$ or M, and M is maximal in G. With $K = N_{k-1}$, M is the subgroup we seek.

Lemma 2. Suppose that G is a finite solvable group, $U \leq H \leq G$, and U is system-permutable and pronormal in G. Then U is system-permutable and pronormal in H.

Proof. U is pronormal in H by [3, I(6.3)(a)]. Now choose any Hall system of U. By [3, I(4.16)], it extends to a Hall system of H, which similarly extends to a Hall system Σ of G. Then Σ reduces into H by definition, and, because U is system-permutable and pronormal in G, U permutes with Σ by [3, I(6.7)]. Then, by [3, I(4.25)(c)], U permutes with $\Sigma \cap H$ in H.

Theorem 1. Suppose that G is a finite solvable group and F is a Fitting set of G. If V is a pronormal, system-permutable Fischer F-subgroup of G, then V is an F-injector of G.

Proof. Suppose that G is a counterexample to the theorem of minimal order, and V is a pronormal, system-permutable Fischer F-subgroup that is not an F-injector of G. If $V \leq H < G$, then V is a Fischer F-subgroup of H, and, by Lemma 2, V is system-permutable and pronormal in H. Hence V is an F-injector of H by minimality of G. Also, if N is normal in G, VN/N is pronormal and system-permutable in G/N by [3, I(4.25)(b), I(6.3)(c)]. These facts make it possible to follow exactly steps (1)–(5) of the proof of Anderson’s result related in [3, VIII(4.7)].

Thus we know the following: the radical, G_F, is trivial; $G = VSN$, where N is minimal normal in G; S is an F-injector of SN; V is an F-injector of VN; SN is normal in G; VN does not contain SN; and G/N is primitive with unique minimal normal subgroup SN/N and core-free maximal subgroup VN/N.

Now let Σ be the Hall system of G with which V permutes, let p be the prime dividing $|N|$, and let Y be the Hall p'-subgroup of G in Σ. Note that $S \cap N$ is
an F-injector of N, and is normal in the abelian N, so $S \cap N = 1$ because, by [3, VIII(2.4)(d)], $N_F = N \cap G_F = 1$. Thus S is isomorphic to SN/N and is an elementary abelian q-group. If $q = p$, then S is subnormal in the p-group SN, which is normal in G, and so, by [3, VIII(2.4)(c)], $S \leq G_F = 1$, a contradiction. Hence $q \neq p$. Because SN is normal in G, $Y \cap SN$ is some Sylow q-subgroup of SN, which is of the form S^x, where $x \in N$.

Now because V is Σ-permutable, VY is a subgroup of G, and $VY \cap SN = VY \cap S^x N = S^x (VY \cap N)$. Clearly, $VY \cap N \leq O_p(VY) \leq V$. But $V \cap N = 1$ for the same reason that $S \cap N = 1$, so $VY \cap N = 1$. Hence $VY \cap SN = S^x$. But this means that the F-subgroup S^x is normalised by VY and therefore by V, so $S^x \leq V$ because V is a Fischer F-subgroup. Hence $SN = S^x N \leq VN$, contradicting our assumption and establishing the theorem.

Theorem 2. Suppose that G is a finite solvable group and F is a Fitting set of G. If U is a system-permutable Fischer F-subgroup of G, then U is an F-injector of G.

Proof. Suppose that G is a minimal counterexample to the theorem, and U is a system-permutable Fischer F-subgroup of G that is not an F-injector of G. Then, by Lemma 1, there exists a maximal subgroup M of G such that $M = UK$, where K is normal in G. Now we know that U is Σ-permutable for some Hall system Σ of G, so Σ reduces into U by [3, I(4.25)(a)], and Σ reduces into $M = UK$ by [3, I(4.17)]. Thus U is $\Sigma \cap M$-permutable in M by [3, I(4.25)(c)], and U is a Fischer F-subgroup of M. By minimality of G, $U \in \text{Inj}_F(M)$. If M is not normal in G, $N_G(M) = M$, so U is pronormal in $N_G(M)$ because it is an F-injector of M by [3, VIII(2.14)(a)]. But $M = UK$ is pronormal in G because M is maximal in G, so U being pronormal in $M = N_G(UK)$ implies that U is pronormal in G by [3, I(6.4)]. But then $U \in \text{Inj}_F(G)$ by Theorem 1, a contradiction. Hence M is normal in G.

Let $g \in G$ and consider $\langle U, U^x \rangle$. Because $U \in \text{Inj}_F(M)$, $U^x \in \text{Inj}_F(M^x) = \text{Inj}_F(M)$ because M is normal in G. But this means that $U^x = U^m$ for some $m \in M$ by [3, VIII(2.9)]. But U is pronormal in M, so $U^m = U^x$ for some $x \in \langle U, U^m \rangle = \langle U, U^x \rangle$. Hence $U^x = U^x$ for $x \in \langle U, U^x \rangle$, and U is pronormal in G. Thus, by Theorem 1, $U \in \text{Inj}_F(G)$, the final contradiction.

Acknowledgements

The author wishes to thank Franklin and Marshall College for its generous sabbatical leave policy and the National University of Ireland, Galway, for its warm welcome.

References
