ON THE ENUMERABLE SET OF DIFFERENT CHARACTERISTIC SETS OF SOLUTIONS OF A PFAFFIAN LINEAR SYSTEM

(Reported on June 22, 1998)

Consider the Pfaffian linear system

$$\frac{\partial x}{\partial t} = A_i(t)x, \quad x \in \mathbb{R}^n, \quad t = (t_1, t_2) \in R_2^2,$$

with bounded continuously differentiable matrices $A_i(t)$ and $A_2(t)$ satisfying the following condition of complete integrability:

$$\frac{\partial A_1(t)}{\partial t} + A_2(t)A_1(t) = \frac{\partial A_2(t)}{\partial t} + A_1(t)A_2(t), \quad t \in R_2^2.$$

It is well known [1, p. 34] that the ordinary linear system $\frac{dx}{dt} = A(t)x, \quad x \in \mathbb{R}^n, \quad t \in R_2^2$, with bounded piecewise continuous coefficients has no more than n different characteristic exponents. Let $\lambda|x| = \lambda \in R^2$ be a characteristic vector $[2 - 4]$ of a nontrivial solution $x: R_2^2 \rightarrow R^2 \setminus \{0\}$ of (1) defined by

$$L_\epsilon(\lambda) = \lim_{t \to +\infty} [\ln \|x(t)\| - (\lambda, t)]/\|t\| = 0, \quad L_\epsilon(\lambda - \epsilon e_i) > 0, \quad \forall \epsilon > 0, \quad i = 1, 2.$$

For the characteristic set $\Lambda_x = \bigcup A[x]$ of this solution which is the most natural analog of Lyapunov's characteristic exponent of a one variable vector-function, the essential initial problem about possible number of different characteristic sets Λ_x of all nontrivial solutions x of (1) remained open. Note also that the set $\{P_x\}$ of different lower characteristic sets $P_x = \bigcup p[x]$ of all nontrivial solutions x of (1) composed of lower characteristic vectors $[5, 6]$ $p[x] = p \in R^2$ defined by

$$l_\epsilon(p) = \lim_{t \to +\infty} [\ln \|x(t)\| - (p, t)]/\|t\| = 0, \quad l_\epsilon(p + \epsilon e_i) < 0, \quad \forall \epsilon > 0, \quad i = 1, 2,$$

is nonenumerable and, moreover, the set of the lower characteristic vectors $\bigcup_{x \neq 0} P_x$ of (1) has a positive planar Lebesgue measure $[5, 6]$.

It holds the following

Theorem. For any sequence $C = \{c_m\}$ of pairwise noncollinear vectors there is a complete integrable two-dimensional system (1) with bounded infinitely differentiable coefficients such that all of its solutions $x(t, c_m), m \in N$, have pairwise different characteristic sets $\Lambda(m)$ with a positive linear Lebesgue measure. If $x(t)$ is a solution of (1) linearly independent with any of $x(t, c_m), c_m \in C$, then its characteristic set $\Lambda_x = \lim_{m \to +\infty} \Lambda(m)$ also has a positive measure.

1. **Construction of the required system.** The preliminary notes. To an enumerable set $C \subseteq R_2^2 \setminus \{0\}$ of the vectors $c_m = (c_{1m}, c_{2m}) \in R^2$ assign the enumerable set $\alpha = \{\alpha_m\} \subseteq R$ of different numbers $\alpha_m \equiv -c_{2m}/c_{1m} \in (-\infty, \infty)$, the ratios of the

1991 Mathematics Subject Classification: 35P99.

Key words and phrases. Pfaffian linear system, characteristic exponent.

The characteristic sets Λ_x and Λ_y of the solutions $x \neq 0$ and $y \neq 0$ of (1) are different if $\Lambda_x \bigcap \Lambda_y \neq \Lambda_x \bigcup \Lambda_y$.
components of the vector \(c_m \). Without loss of generality it can be assumed that first components \(c^{1}_{m} \) of \(c_m \) are nonzero.

In the closed first quarter \(R_{+}^{2} \) of the plane \(R^{2} \) we will build the required Pfaffian system by constructing its fundamental (lower-triangular and infinitely differentiable) system of solutions \(X(t) = (x_{ij}(t))^T \) with \(x_{12}(t) \equiv 0 \) for \(t \in R_{+}^{2} \).

On the interval \((-\infty, \infty)\) define two infinitely differentiable functions \([7, p. 54]\):

\[
e_{0}(\eta; \eta_{1}, \eta_{2}) = \begin{cases}
0, & \text{if } \eta_{1} \in (\infty, \eta_{2}), \\
\exp\left(-\left(\eta - \eta_{1}\right)^{2} \right) \exp\left(-\left(\eta - \eta_{2}\right)^{2} \right), & \text{if } \eta_{1} \in (\eta, \eta_{2}), \\
1, & \text{if } \eta_{2} \in (\eta, \infty),
\end{cases}
\]

\[
e_{1}(\eta; \eta_{1}, \eta_{2}) = \begin{cases}
1, & \text{if } \eta \in (\infty, \eta_{2}), \\
\exp\left(-\left(\eta - \eta_{1}\right)^{2} \right) \exp\left(-\left(\eta - \eta_{2}\right)^{2} \right), & \text{if } \eta \in (\eta, \eta_{2}), \\
0, & \text{if } \eta \in (\eta_{2}, \infty),
\end{cases}
\]

where \(-\infty < \eta_{1} < \eta_{2} < +\infty\) are used for constructing of elements of the matrix \(X(t) \).

With the help of the numbers \(p_{0} = 0, q_{0} = \epsilon \in (0, 1/8), \) and \(q_{k} = 1 - 2^{-k}, p_{k} = q_{k} - 2^{-1-k}, \) \(k \in N, \) define the sectors: the closed ones \(S_k = \{ t \in R_{+}^{2} : q_{k-1} < t_1 < t_2 < q_k \} \) with \(k \geq 0, \) the open ones \(s_k = \{ t \in R_{+}^{2} : q_{k-1} < t_1 < t_2 < q_k \} \) with natural \(k \geq 1, \) and the also sector \(s_0 = \{ t \in R_{+}^{2} : 0 \leq t_1/t_2 < \epsilon \} \).

2. The construction of the diagonal elements of the fundamental system. In \(R_{+}^{2} \) define the positive function \(x_2(t) \) by

\[
\ln x_2(t) = \begin{cases}
\sqrt{t_2 + t_2/\sqrt{c}} - (\sqrt{t_2} - \sqrt{\epsilon} - \sqrt{t_2/\sqrt{c}})^2 \ln(t_2/t_1; 0, \epsilon), & t \in S_0, \\
\sqrt{t_2 + t_1/\sqrt{c}} - (\sqrt{t_2} - \sqrt{\epsilon} - \sqrt{t_2/\sqrt{c}})^2 \ln(t_2/t_1; 0, \epsilon), & t \in s_0, \\
\sqrt{t_2 + t_1/\sqrt{c}} - (\sqrt{t_2} - \sqrt{\epsilon} - \sqrt{t_2/\sqrt{c}})^2 \ln(t_2/t_1; 0, \epsilon), & t \in R_{+}^{2} \setminus (s_0 \cup S_0) \cap S_k = \emptyset.
\end{cases}
\]

Put the function \(x_1 : R_{+}^{2} \to [1, +\infty) \) be equal to \(x_2 : 1 \) on a closed sector \(S \subset R_{+}^{2}, \) which is bounded by the bisection \(t_2 = t_1 \) and the positive coordinate semiaxis \(t_1 = 0; \) 2) on all sectors \(S_k, k \geq 0. \) In order to define this function on the remaining sectors \(s_k, k \in N, \) we consider the numbers \(r_k = c_{s_{k-1}}, r_0 = 0, k \in N, \) satisfying

\[
(1 + |\alpha_k| + |\alpha_{k+1}|) \exp (\epsilon_{0} - p_{k})^{-2}, \quad k \in N; \quad r_{1} > (1 + |\alpha_{1}|) \exp (\epsilon_{0} - p_{k})^{-2}.
\]

In the sector \(s_k \) we will define \(x_1(t) \) by

\[
\ln x_1(t) = 2\sqrt{t_2} \ln(1 + \epsilon_{0} \ln(\|t\|/r_{1}; 1, 3/2)c_{s_{k-1}}(t_2/t_1; q_{k-1}, p_{k}) - 1), \quad t \in s_k, k \in N.
\]

Note that by definition of the function \(e_{0}(\eta; \eta_{1}, \eta_{2}) \) on the whole axis \((-\infty, +\infty) \) we have

\[
\ln x_1(t) = 2\sqrt{t_2} \ln(1 + \epsilon_{0} \ln(\|t\|/r_{k}; 1, 3/2)c_{s_{k-1}}(t_2/t_1; q_{k-1}, p_{k}) - 1), \quad t \in s_k, \quad \|t\| \geq 3r_{k}/2.
\]

3. The construction of the off-diagonal elements of the fundamental system. Due to [5, 6], define the off-diagonal element \(x_{21}(t) \) of a constructed two-dimensional linear Pfaffian system with bounded infinitely differentiable coefficients and two-dimensional time by the equality \(x_{21}(t) = x_{2}(t) F(t), t \in R_{+}^{2}, \) where the infinitely differentiable function \(F(t) \) is defined by

\[
F(t) = \begin{cases}
0, & \text{if } t \in S, \\
\alpha_{k} \ln(\|t\|/r_{k}; 1/2, 1), & \text{if } t \in s_{k}, k \in N, \\
\alpha_{k} \ln(\|t\|/r_{k}; 1/2, 1) + \epsilon_{0} (t_2/t_1; p_{k}) \ln(\|t\|/r_{k}; 1/2, 1) - \epsilon_{0} (t_2/t_1; p_{k}) \ln(\|t\|/r_{k}; 1/2, 1), & \text{if } t \in S, \quad k \geq 0.
\end{cases}
\]

The infinite differentiability of the functions \(x_{21}(t) \geq 1, \) \(x_{2}(t) \geq 1, \) and \(F(t) \) on \(R_{+}^{2} \) follows from the same property of the functions \(e_{0}(t_2/t_1; p_{k}) \) for \(k \geq 0, \epsilon_{0}(\|t\|/r_{k}; 1/2, 1) \) for \(k \geq 1, \) and \(e_{11}(t_2/t_1; q_{k-1}, p_{k}) \) for \(k \in N. \)
4. The boundedness of coefficient matrices

\[A_i(t) = \frac{\partial X(t)}{\partial t} X^{-1}(t) = \begin{pmatrix}
 x_{1}^t(t) & \frac{\partial x_{2}(t)}{\partial t} \\
 \frac{\partial x_{1}(t)}{\partial t} & x_{2}^{-1}(t) \frac{\partial x_{2}(t)}{\partial t}
\end{pmatrix}, \quad i = 1, 2
\]

of the constructed two-dimensional system (1) is proved by the following statement:

Lemma. For all \(m \in \mathbb{N} \) and any \((\eta_1, \eta_2) \) with the lengths \(\leq 1/2 \) there are the estimates

\[
(\eta - \eta_1)^{-m} e^{a_0(\eta \eta_1, \eta_2)} \leq \sqrt{m/2e} \exp(\eta_2 - \eta_1)^{-2})^{-m}, \quad \eta \in (\eta_1, \eta_2),
\]

\[
(\eta_2 - \eta)^{-m} \exp(-\eta_2 - \eta)^{-2} \leq \sqrt{m/2e}^{-m}, \quad \eta \in (\eta_1, \eta_2).
\]

It is evident, that the infinite differentiability of the matrices \(A_i(t) \) in \(\mathbb{R}^2_+ \) follows from the same property of the nonsingular lower-triangular matrix \(X(t) \). Similarly, the infinite differentiability of the fundamental solutions system \(X(t) \) ensures the feasibility of the complete integrability conditions (2) for the constructed two-dimensional system (1).

5. The construction of the characteristic set of solutions. First for the characteristic set \(\Lambda_2 \) of the solution \(x(t, t_2) = (0, x_2(t)) \) of system (1) we obtain the representation \(\Lambda_2 = \Lambda = [\lambda_1, 1/\lambda_1] \in \mathbb{R}^2_+ \) \(\lambda_1 \in [\sqrt{c_1}, 1/\sqrt{c_1}] \). Then for the solution \(x(t, c_m) \) we establish the relations

\[
\|x(t, c_m)\| = x_1(t) = \|x_2(t)\|^{(1/2) \log \left(s_m - 1/p_m \right)} \equiv \rho_m(t), \quad t \in s_m, \quad \|t\| \geq 3r_m/2;
\]

\[
\max \{x_1(t), \delta k - \alpha_m \|x_2(t)\| \leq \|x(t, c_m)\| \leq (1 + |\alpha_k - \alpha_m|) \|x_2(t)\|, \quad t \in s_k, \quad \|t\| \geq 3r_k/2, \quad k \neq m;
\]

\[
1 \leq \|x(t, c_m)\|/\|x_2(t)\| \leq 1 + |\alpha_k - \alpha_m| + \alpha_{k+1} - \alpha_k, \quad t \in S_k, \quad \|t\| \geq r_{k+1}, \quad k \geq 0;
\]

\[
\|x(t, c_m)\| = \sqrt{1 + \alpha_k^2}, \quad t \in S.
\]

Hence in view of the equality \(\lim_{k \to \infty} \alpha_k = 0 \) the choice of the number \(r_k \), and the uniform in \(t \in s_k \) tending of \(e_1,(l_2/t_1; q_{m-1}, p_k) \) as \(k \to \infty \), it follows that the characteristic set \(\Lambda(m) \) of \(x(t, c_m) \) coincides with the characteristic set of the function \(\rho_m(t) \), which is equal to \(x_2(t) \) outside the sector \(S_m \), \(m \in \mathbb{N} \). By montrival reasonings it established then, that the vector \(\lambda_2(y) \in \mathbb{R}^2 \) with the components

\[
\lambda_2(y) = \varphi_m^1(y), \lambda_1(y) = \varphi_m^2(y) - \psi_m(y) \quad \text{for any} \quad \eta \in [c_1, 1/\sqrt{c_1}],
\]

is located below this hyperbola at \(\lambda_1 \in [\sqrt{c_1}, 1/\sqrt{c_1}] \). In particular, for \(\eta - \eta_m \equiv (q_m - 1 + p_m)/2 \) we obtain the point \(\lambda_2(y) \in \Lambda(m) \) with the coordinates \(\lambda_1(y) = \sqrt{q_m(1 - e^{\gamma_m})}/\sqrt{p_m}, \quad \gamma_m = 10(p_m - q_{m-1})^{-2} \). And the product \(\lambda_1(y) \lambda_2(y) \quad \text{for} \quad \eta \neq \eta_m < 1 \). Obviously, \(\lambda(t) \neq \Lambda(m) \) for any \(t, m \in \mathbb{N} \) \(t \neq m \) and \(\lim_{m \to \infty} \Lambda(m) = \Lambda \). It is not difficult to prove also the equality \(\Lambda_2 = \Lambda \) for a solution (1) linearly independent with any of \(x(t, c_m) \), \(m \in \mathbb{N} \) of the system (1).

The construction of the characteristic sets of all solutions of (1) is completed.

Remark. Obviously, from the constructed two-dimensional system (1) it may be possible to obtain an \(n \)-dimensional completely integrable system (1) with bounded infinitely differentiable coefficients in \(\mathbb{R}^2_+ \), which have enumerable number of different characteristic sets of the solutions.

Problem. It ought be to clarified, whether the set \(\{A_2\} \) of different characteristic sets \(\Lambda_2 \) of solutions \(x : \mathbb{R}^2_+ \to \mathbb{R}^n \) of a Pfaffian system (1) is finite or enumerable.
REFERENCES

5. N. A. IZOBOV, On existence of Pfaff linear systems with the lower characteristic vectors set of positive plane measure. (Russian) Differentsial’nye Uravneniya 33 (1997), No. 12, 1629–1630.

Author's address:
Institute of Mathematics
Belorussian National Academy of Sciences
11, Surganova St., Minsk 220072
Belarus