ON SYSTEMS OF LINEAR GENERALIZED ORDINARY DIFFERENTIAL AND INTEGRAL INEQUALITIES

(Reported on April 15–22, 1996)

In the present note, we consider the questions of estimates of the solutions of the system of differential inequalities

$$dx(t)\cdot \text{sign}(t-t_0) \leq dC(t) \cdot x(t) + dq(t) \quad \text{for} \quad t \in [a, b] \setminus \{t_0\},$$

satisfying the condition

$$x(t_0) + (-1)^j d_j x(t_0) \leq c_0 + d_j C(t_0) \cdot c_0 + d_j q(t_0) \quad (j = 1, 2),$$

and of the solutions of the system of integral inequalities

$$x(t) \leq c_0 + \left(\int_{t_0}^{t} dC(\tau) \cdot x(\tau) + q(\tau) - q(t_0) \right) \text{sign}(t-t_0) \quad \text{for} \quad t \in [a, b],$$

satisfying the condition (2), where $t_0 \in [a, b]; c_0 \in \mathbb{R}^n; q \in \text{BV}(\mathbb{R}^n)$ and $C = (c_{ik})_{i,k=1}^{n,n}$ is the set of all real $n \times m$-matrices $X = (x_{ik})_{i,k=1}^{n,m}$. If $X \in \mathbb{R}^{n \times n}$, then $\det(X)$ is the determinant of X, I_n is the identity $n \times n$-matrix; $R^2 = \mathbb{R}^{n \times 1}$ is the set of all real column vectors $x = (x_i)_{i=1}^{n}$.

The following notation and definitions will be used: $\mathbb{R} = (-\infty, +\infty]$ is a closed segment, $\mathbb{R}^{n \times m}$ is the set of all real $n \times m$-matrices $X = (x_{ik})_{i,k=1}^{n,m}$. If $X \in \mathbb{R}^{n \times m}$, then $\det(X)$ is the determinant of X, I_n is the identity $n \times n$-matrix; $R^2 = \mathbb{R}^{n \times 1}$ is the set of all real column vectors $x = (x_i)_{i=1}^{n}$.

$\text{BV}(\mathbb{R}^n, \mathbb{R}^{n \times m})$ is the set of all matrix-functions $X = (x_{ik})_{i,k=1}^{n,n} : [a, b] \to \mathbb{R}^{n \times m}$ such that every its component x_{ik} has bounded total variation on $[a, b]$. If $I \subset \mathbb{R}$ is an interval, then $\text{BV}(I, \mathbb{R}^{n \times m})$ is the set of all matrix-functions $X : I \to \mathbb{R}^{n \times m}$ such that $X \in \text{BV}(\mathbb{R}^n, \mathbb{R}^{n \times m})$ for every $c, d \in I$. $X(t) = (x_{ik}(t))_{i,k=1}^{n,m}$ are the left and the right limits of X at the point $t \in [a, b]$ ($X(a) - X(a)$), $X(b) = X(\hat{b})$, $d_1 X(t) = X(t) - X(t-), d_2 X(t) = X(t+) - X(t)$.

If $g : [a, b] \to R$ is a nondecreasing function, $x : [a, b] \to R$ and $a \leq s < t \leq b$, then

$$\int_{s}^{t} x(\tau) \, dg(\tau) = \int_{[s,t]} x(\tau) \, dg(\tau) + x(s) \, d_1 g(t) + x(t) \, d_2 g(s),$$

where $\int_{[s,t]} x(\tau) \, dg(\tau)$ is the Lebesgue–Stieltjes integral over the open interval $[a, t]$ with respect to the measure μ_α corresponding to the function g (if $s = t$, then $\int_{s}^{t} x(\tau) \, dg(\tau) = 0$).

1991 Mathematics Subject Classification. 34B05.

Key words and phrases. Differential and integral inequalities, system of linear generalized ordinary differential equations.
If \(g_j : [a, b] \to R \) \((j = 1, 2)\) are nondecreasing functions, \(g = g_1 - g_2 \) and \(x : [a, b] \to R \), then

\[
\int_a^t x(\tau) dg(\tau) = \int_a^t x(\tau) dg_1(\tau) - \int_a^t x(\tau) dg_2(\tau) \quad \text{for} \quad a \leq s \leq t \leq b.
\]

If \(G = (g_{ik})_{n,k=1}^n \in \text{BV}([a, b], R^{n \times n}) \), \(x = (x_k)_{k=1}^n \in \text{BV}([a, b], R^n) \), then

\[
\int_a^t dG(\tau) \cdot x(\tau) = \left(\sum_{i=1}^n \int_a^t x_i(\tau) dg_{ik}(\tau) \right)^n \quad \text{for} \quad a \leq s \leq t \leq b.
\]

Let \(I \subset [a, b] \) be an interval and \(A \in \text{BV}(I, R^{n \times n}) \). A vector-function is said to be a solution of the system of the linear generalized ordinary differential equations \(dx(t) = dA(t) \cdot x(t) + dq(t) \) (inequalities \(dx(t) \leq dA(t) \cdot x(t) + dq(t) \)) on \(I \) if

\[
x(t) - x(s) - \int_s^t dA(\tau) \cdot x(\tau) - q(\tau) + q(s) = 0 \quad (\leq 0) \quad \text{for} \quad s \leq t \leq (s, t \in I).
\]

Theorem 1. Let \(c_{ik} \) \((i \neq k; i, k = 1, \ldots, n)\) be functions nondecreasing on \([a, b]\), \(C(t) = (c_{ik}(t))_{i,k=1}^n \).

\[
\det \left(t_i + (-1)^j d_j C(t) \right) \neq 0 \quad \text{for} \quad (-1)^j (t - t_0) \geq 0 \quad (j = 1, 2),
\]

\[
1 + d_j c_{ik}(t) > 0 \quad \text{for} \quad (-1)^j (t - t_0) \geq 0 \quad (j = 1, 2; \; i = 1, \ldots, n),
\]

and

\[
\sum_{i=1}^n d_j c_{ik}(t) < 1 \quad \text{for} \quad (-1)^j (t - t_0) < 0 \quad (j = 1, 2; \; k = 1, \ldots, n).
\]

Let, moreover, \(x \in \text{BV}([a, t_0], R^n) \cap \text{BV}([t_0, b], R^n) \) be a solution of the system (1) satisfying the condition (2). Then

\[
x(t) \leq y(t) \quad \text{for} \quad t \in [a, b] \setminus \{t_0\},
\]

where \(y \in \text{BV}([a, b], R^n) \) is a solution of the problem

\[
dy(t) = \left[dC(t) \cdot y(t) + dq(t) \right] \text{sign}(t - t_0) \quad \text{for} \quad t \in [a, b] \setminus \{t_0\},
\]

\[
(-1)^j d_j y(t_0) - d_j C(t_0) \cdot y(t_0) + d_j q(t_0) \quad (j = 1, 2),
\]

\[
y(t_0) = c_0.
\]

Theorem 2. Let \(c_{ik} \) \((i, k = 1, \ldots, n)\) be functions nondecreasing on \([a, b]\) and (4) and (6) hold where \(C(t) = (c_{ik}(t))_{i,k=1}^n \). Then for every solution \(x \in \text{BV}([a, t_0], R^n) \cap \text{BV}([t_0, b], R^n) \) of the system (3) satisfying the condition (2), the estimate (7) holds, where \(y_0 \in \text{BV}([a, b], R^n) \) is a solution of the problem (8)-(10).

Remark. The condition

\[
\max_{k=1,\ldots,n} \sum_{i=1}^n |d_j c_{ik}(t)| < 1 \quad \text{for} \quad t \in [a, b] \quad (j = 1, 2)
\]

is not necessary.
guarantees the conditions (4)–(6). Moreover, in view of (4) the problem (8)–(10) has a unique solution (see [1, Theorem III.1.4]).

References

Author’s address:
Sukhumi Branch of Tbilisi State University
19, Al. Chavchavadze St., Tbilisi 380040
Georgia