MATHEMATICA BOHEMICA, Vol. 130, No. 4, pp. 349-354 (2005)

Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion

Tuo-Yeong Lee

Tuo-Yeong Lee, Mathematics and Mathematics Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore, e-mail:

Abstract: It is shown that a Banach-valued Henstock-Kurzweil integrable function on an $m$-dimensional compact interval is McShane integrable on a portion of the interval. As a consequence, there exist a non-Perron integrable function $f [0,1]^2 \longrightarrow{\mathbb R}$ and a continuous function $F [0,1]^2 \longrightarrow{\mathbb R}$ such that
(\P) \int_0^x \bigg\{ (\P) \int_0^yf(u,v) \dd v \bigg\} \dd u = (\P) \int_0^y \bigg\{ (\P) \int_0^xf(u,v) \dd u \bigg\} \dd v = F(x,y)
for all $(x,y) \in[0,1]^2$.

Keywords: Henstock-Kurzweil integral, McShane integral

Classification (MSC2000): 28B05, 26A39

Full text of the article:

[Previous Article] [Next Article] [Contents of this Number] [Journals Homepage]
© 2005–2010 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition