Comment from Ralf Stephan, July 20 2003.

In the article "Integer Sequences Related to Compositions without 2's", Chinn and Heubach state in section 6 that the number of partitions without 2's is not yet listed in the OEIS. But there is

%I A027336
%S A027336 1,1,1,2,3,4,6,8,11,15,20,26,35,45,58,75,96,121,154,193,242,302,375,463,
%T A027336 573,703,861,1052,1282,1555,1886,2277,2745,3301,3961,4740,5667,6754,
%U A027336 8038,9548,11323,13398,15836,18678,22001,25873,30383,35620,41715,48771
%N A027336 Number of partitions of n that do not contain 2 as a part.
%o A027336 (PARI) a(n)=if(n<0,0,polcoeff((1-x^2)/eta(x+x*O(x^n)),n))
%Y A027336 Cf. A027337.
%Y A027336 a(n)=A000041(n+2)-A000041(n).
%K A027336 nonn
%O A027336 2,4
%A A027336 Clark Kimberling,
%E A027336 More terms from Benoit Cloitre (, Dec 10 2002
The numbers the authors gave also match the pairwise sums of sequence A002865 (partitions in which the least part is at least 2).