Some Arithmetic Properties of Certain Sequences

E. L. Roettger
Department of General Education
Mount Royal University
4825 Mount Royal Gate SW
Calgary, AB T3E 6K6
Canada
eroettger@mtroyal.ca

H. C. Williams1
Department of Mathematics and Statistics
University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
Canada
williams@math.ucalgary.ca

Abstract

In an earlier paper it was argued that two sequences, denoted by \{U_n\} and \{W_n\}, constitute the sextic analogues of the well-known Lucas sequences \{u_n\} and \{v_n\}. While a number of the properties of \{U_n\} and \{W_n\} were presented, several arithmetic properties of these sequences were only mentioned in passing. In this paper we discuss the derived sequences \{D_n\} and \{E_n\}, where \(D_n = \gcd(W_n - 6R^n, U_n)\) and \(E_n = \gcd(W_n, U_n)\), in greater detail and show that they possess many number theoretic properties analogous to those of \{u_n\} and \{v_n\}, respectively.

1The second author is supported by NSERC of Canada.
1 Introduction

Let \(p, q \in \mathbb{Z} \) be relatively prime and \(\alpha, \beta \) be the zeros of

\[x^2 - px + q \]

with discriminant \(\delta = (\alpha - \beta)^2 = p^2 - 4q \). The well-known Lucas sequences \(\{u_n\} \) and \(\{v_n\} \) are defined by

\[u_n = u_n(p, q) = \frac{\alpha^n - \beta^n}{\alpha - \beta}, \quad v_n = v_n(p, q) = \alpha^n + \beta^n. \]

These sequences possess many interesting properties and have found applications in primality testing, integer factorization, solution of quadratic and cubic congruences, and cryptography (see [4]). We note here that both sequences are linear recurrence sequences of order 2 and that \(u_n, v_n \in \mathbb{Z} \) whenever \(n \geq 0 \).

Lucas’ problem of extending or generalizing his sequences has been well studied and we refer the reader to [2, Chapter 1] and [3, Section 1] for further information on this topic.

One possible extension of the Lucas sequences, which involves cubic instead of quadratic irrationalities, was investigated in [2] (also see Müller, Roettger and Williams [1]). In this case we let \(P, Q, R \in \mathbb{Z} \) be integers such that \(\gcd(P, Q, R) = 1 \) and let \(\alpha, \beta, \gamma \) be the zeros of

\[h(x) = x^3 - Px^2 + Qx - R, \quad (1) \]

with discriminant

\[\Delta = (\alpha - \beta)^2(\beta - \gamma)^2(\gamma - \alpha)^2 = Q^2P^2 - 4Q^3 - 4RP^3 + 18PQR - 27R^2 \neq 0. \]

Roettger’s sequences \(\{c_n\} \) and \(\{w_n\} \) are defined as

\[c_n = c_n(P, Q, R) = (\alpha^n - \beta^n)(\beta^n - \gamma^n)(\gamma^n - \alpha^n)/((\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)) \]

and

\[w_n = w_n(P, Q, R) = (\alpha^n + \beta^n)(\beta^n + \gamma^n)(\gamma^n + \alpha^n) - 2R^n. \]

Note here that if \(n \geq 0 \), we have \(c_n, w_n \in \mathbb{Z} \) and \(\{c_n\}, \{w_n\} \) are linear recurrence sequences of order 6.

In [2], it is pointed out that the sequences \(\{c_n\} \) and \(\{w_n\} \) have many properties analogous to those of \(\{u_n\} \) and \(\{v_n\} \), respectively. Recently, these sequences were extended further by Roettger, Williams and Guy [3]. If we put \(\gamma_1 = \alpha/\beta, \gamma_2 = \beta/\gamma, \gamma_3 = \gamma/\alpha, \lambda = R \), then we can write

\[c_n = \lambda^{n-1}(1 - \gamma_1^n)(1 - \gamma_2^n)(1 - \gamma_3^n)/((1 - \gamma_1)(1 - \gamma_2)(1 - \gamma_3)) \]

and

\[w_n = v_n - 2R^n, \quad \text{where} \]

\[v_n = \lambda^n(1 + \gamma_1^n)(1 + \gamma_2^n)(1 + \gamma_3^n). \]
One of the most important properties of the Lucas sequence \(\{u_n\} \) when \(n \geq 0 \) is that it is a divisibility sequence. An integer sequence \(\{A_n\} \) is said to be a divisibility sequence if \(A_n \mid A_m \) whenever \(n \mid m \) and \(A_n \neq 0 \). For example, Roettger’s sequence \(\{c_n\} \) \((n \geq 0) \) is a divisibility sequence. Suppose we define

\[
U_n = \frac{\lambda^{n-1}(1 - \gamma_1^n)(1 - \gamma_2^n)(1 - \gamma_3^n)}{(1 - \gamma_1)(1 - \gamma_2)(1 - \gamma_3)}, \tag{2}
\]

\[
V_n = \lambda^n(1 + \gamma_1^n)(1 + \gamma_2^n)(1 + \gamma_3^n), \tag{3}
\]

where \(\lambda, \gamma_1, \gamma_2, \gamma_3 \in \mathbb{Q} \); \(\gamma_1, \gamma_2, \gamma_3 \neq 1; \gamma_i \neq \gamma_j \) when \(i \neq j \) and \(\gamma_1 \gamma_2 \gamma_3 = 1 \). In [3], it is shown that if \(U_n, V_n \in \mathbb{Z} \) whenever \(n \geq 0 \), \(\{U_n\} \) is a linear recurrence sequence and \(\{U_n\} \) is also a divisibility sequence, then we must have \(\lambda = R \in \mathbb{Z} \) and \(\rho_i = R(\gamma_i + 1/\gamma_i) \) \((i = 1, 2, 3) \) must be the zeros of a cubic polynomial

\[
g(x) = x^3 - S_1x^2 + S_2x - S_3, \tag{4}
\]

where

\[
S_3 = RS_1^2 - 2RS_2 - 4R^3 \tag{5}
\]

and \(S_1, S_2 \in \mathbb{Z} \). The six zeros of

\[
G(x) = (x^2 - \rho_1x + R^2)(x^2 - \rho_2x + R^2)(x^2 - \rho_3x + R^2)
= x^6 - S_1x^5 + (S_2 + 3R^2)x^4 - (S_3 + 2R^2S_1)x^3 + R^2(S_2 + 3R^2)x^2 - R^4S_1x + R^6
\]

are \(R\gamma_i, R/\gamma_i \) \((i = 1, 2, 3) \). If we define \(W_n = V_n - 2R^n \), then both \(\{U_n\} \) and \(\{W_n\} \) are linear recurrence sequences with characteristic polynomial \(G(x) \). Also, \(U_0 = 0, U_1 = 1, U_2 = S_1 + 2R, U_3 = S_1^2 + RS_1 - S_2 - 3R^2, W_0 = 6, W_1 = S_1, W_2 = S_1^2 - 2S_2 - 6R^2, W_3 = S_1^3 - 3S_1S_2 + 3RS_1^2 - 6RS_2 - 3R^2S_1 - 12R^3 \). Furthermore, we have \(U_{-n} = -U_n/R^{2n} \), \(W_{-n} = W_n/R^{2n} \); hence, \(U_n, W_n \in \mathbb{Z} \) when \(n \geq 0 \). It is also the case that \(\{U_n\} \) is a divisibility sequence.

It is shown in [3] that if

\[
S_1 = PQ - 3R, \quad S_2 = P^3R + Q^3 - 5PQR + 3R^2, \tag{6}
\]

then \(U_n(S_1, S_2, R) = c_n(P, Q, R), W_n(S_1, S_2, R) = w_n(P, Q, R) \). If, in the expression (2), we define

\[
\Delta = \lambda^2(1 - \gamma_1)^2(1 - \gamma_2)^2(1 - \gamma_3)^2
= R^2(\gamma_1 + \gamma_2 + \gamma_3 - 1/\gamma_1 - 1/\gamma_2 - 1/\gamma_3)^2, \tag{7}
\]

we find that

\[
\Delta = S_1^2 - 4S_2 + 4RS_1 - 12R^2, \tag{8}
\]
but this is the same as $Q^2P^2 - 4Q^3 - 4RP^3 + 18PQR - 27R^2$, the discriminant of $h(x)$, when S_1 and S_2 are given by (6). If d denotes the discriminant of $g(x)$, then, as shown in [3], we have $d = \Delta \Gamma$, where

$$
\Gamma = R^4(\gamma_1 - \gamma_2)^2(\gamma_2 - \gamma_3)^2(\gamma_3 - \gamma_1)^2
$$

(9)

$$
= S_2^2 + 10RS_1S_2 - 4RS_1^3 - 11R^2S_1^2 + 12R^3S_1 + 24R^2S_2 + 36R^4.
$$

(10)

The discriminant D of $G(x)$ is given by $D = Ed^2R^2$, where

$$
E = R^2\Delta(S_1 + 2R)^2 = (\rho_1 - 4R^2)(\rho_2 - 4R^2)(\rho_3 - 4R^2).
$$

If S_1 and S_2 are given by (6), then

$$
\Gamma = (RP^3 - Q^3)^2.
$$

(11)

We remark that the condition analogous to $\gcd(P, Q, R) = 1$ for Roettger’s sequences is $\gcd(S_1, S_2, R) = 1$ for the more general $\{W_n\}$ and $\{U_n\}$ sequences.

The duplication formulas are

$$
2W_{2n} = W_n^2 + \Delta U_n^2 - 4R^nW_n, \quad U_{2n} = U_n(W_n + 2R^n)
$$

(12)

and the triplication formulas are

$$
4W_{3n} = 3\Delta U_n^2(W_n + 2R^n) + W_n^2(W_n - 6R^n) + 24R^{2n},
$$

(13)

$$
4U_{3n} = U_n(3W_n^2 + \Delta U_n^2).
$$

(14)

Since $\{U_n\}$ is a divisibility sequence, we must have $U_{3n}/U_n \in \mathbb{Z}$ ($n \geq 0$) and by (14), this means that $4 \mid W_n^2 - \Delta U_n^2$. Thus, if $2 \mid U_n$, then $2 \mid W_n$ and we have proved Proposition 1.

Proposition 1. *If $n \geq 0$, then $2 \mid \gcd(W_n, U_n)$ if and only if $2 \mid U_n$. *

The general multiplication formulas for $\{W_n\}$ and $\{U_n\}$ are given as [3, (7.7) and (7.8)].

We observe here that in general for a given $S_1, S_2, R \in \mathbb{Z}$ there do not always exist, $P, Q \in \mathbb{Z}$ such that (6) holds. As a simple example consider $S_1 = -1, S_2 = -4, \text{ and } R = 1$; it is not possible to find integers P, Q such that $PQ = 2$ and $P^3 + Q^3 = 3$. Thus, the sequences $\{W_n(S_1, S_2, R)\}, \{U_n(S_1, S_2, R)\}$ represent a non-trivial extension of Roettger’s sequences $\{w_n\}$ and $\{c_n\}$.

In [3] it is mentioned that if we define

$$
D_n = \gcd(W_n - 6R^n, U_n) \quad \text{and} \quad E_n = \gcd(W_n, U_n),
$$

then the sequences $\{D_n\}$ and $\{E_n\}$ possess many number theoretic properties in common with $\{w_n\}$ and $\{v_n\}$, respectively. Indeed, some of these properties were presented in [3] without proof. The purpose of this paper is to supply these proofs or sketches thereof and to develop some new results concerning $\{D_n\}$ and $\{E_n\}$.
2 Some properties of \(\{D_n\} \)

In this section we will produce some results concerning \(\{D_n\} \) that are similar to those possessed by \(\{u_n\} \). We begin with two simple propositions that easily follow from Lemma 8.1 of [3] and results immediately following that lemma.

Proposition 2. If \(\gcd(S_1, S_2, R) = 1 \), then for \(n \geq 0 \) we have

\[
\gcd(D_n, R) | 2.
\]

Proposition 3. If \(\gcd(S_1, S_2, R) = 1 \), then for any \(n \geq 0 \), we must have \(4 \nmid D_n \) whenever \(2 \mid R \).

In the sequel we will assume that \(S_1, S_2, R \) have been selected such that \(\gcd(S_1, S_2, R) = 1 \).

If we define

\[
F_n = \begin{cases}
\Delta U^2_n, & \text{when} \ 2 \nmid \Delta U_n; \\
\Delta U^2_n/4, & \text{when} \ 2 \mid \Delta U_n
\end{cases}
\]

we see that since \(4 \mid W_n^2 - \Delta U^2_n \), \(F_n \) must be an integer. If \(M \) is any divisor of \(F_n \) and \((M, R) = 1 \), then we can use [3, (7.7) and (7.8)] to show that

\[
\begin{align*}
U_{mn}/U_n &\equiv R^{n(m-1)}K_m(W_n/2R^n) \pmod{M}, \quad (15) \\
W_{mn} &\equiv 2R^{mn}L_m(W_n/2R^n) \pmod{M}, \quad (16)
\end{align*}
\]

where the polynomials \(K_m(x) \) and \(L_m(x) \) are respectively defined in [2, §4.3 and §5.1]. Also, from results in [2] it is easy to show that \(L_m(3) = 3 \) and \(K_m(3) = m^3 \). We next establish that like \(\{u_n\} \), \(\{D_n\} \) is a divisibility sequence.

Theorem 4. If \(n, m \geq 1 \), then \(D_n | D_{mn} \).

Proof. Since \(\{U_n\} \) is a divisibility sequence it suffices to show \(D_n | W_{mn} - 6R^{mn} \). We let \(2^{\lambda} || D_n \). If \(\lambda = 0 \) or \(\lambda \geq 1 \) and \(2 \nmid R \), then \(D_n | F_n \). By Proposition 2, we have \(\gcd(D_n, R) = 1 \) and by (16) we get

\[
W_{mn} \equiv 2R^{mn}L_m(W_n/2R^n) \equiv 2R^{mn}L_m(3) \equiv 6R^{mn} \pmod{D_n}.
\]

If \(\lambda = 1 \), then \(\gcd(D_n/2, R) = 1 \) and \(D_n/2 | F_n \); hence,

\[
W_{mn} \equiv 6R^{mn} \pmod{D_n/2}.
\]

Also, since \(2 \mid U_n \), we have \(2 \mid U_{mn} \) and \(2 \mid W_{mn} \) (Proposition 1). It follows that \(W_{mn} \equiv 6R^{mn} \pmod{2} \) and since \(\gcd(2, D_n/2) = 1 \) we get

\[
W_{mn} \equiv 6R^{mn} \pmod{D_n}.
\]

There remains the case of \(\lambda > 1 \) and \(2 \mid R \), but this is impossible by Proposition 3. \(\square \)
Let p be any prime. We are next able to present the law of repetition for p in $\{D_n\}$. We denote by $\nu_p(x) (x \in \mathbb{Z})$ that value of λ such that $p^\lambda \| x$.

Theorem 5. Let p be any prime such that $p > 3$ and suppose that $\nu_p(D_n) \geq 1$.

1. If $\nu_p(U_n) > \nu_p(W_n - 6R^n)$, then $\nu_p(D_{pn}) = \nu_p(D_n) + 2$ and $\nu_p(W_{pn} - 6R^{pn}) < \nu_p(U_{pn})$.
2. If $\nu_p(U_n) = \nu_p(W_n - 6R^n)$ and $\nu_p(U_n) > 1$, then $\nu_p(D_{pn}) = \nu_p(D_n) + 2$ and $\nu_p(W_{pn} - 6R^{pn}) < \nu_p(U_{pn})$.
3. If $\nu_p(U_n) < \nu_p(W_n - 6R^n)$, then if $\nu_p(U_n) > 1$, $\nu_p(D_{pn}) = \nu_p(D_n) + 3$.
4. If $\lambda = 1$, then $\nu_p(D_{pn}) \geq 2$.

Proof. These results can be established by making use of the techniques of [2, §5.2], together with the polynomial congruence

$$L_p(x) \equiv 3 + p^2(x - 3) + (p^2(p^2 - 1)/12)(x - 3)^2 + (p^2(p^2 - 1)(p^2 - 4)/360)(x - 3)^3 \pmod{(x - 3)^4},$$

which holds for all primes $p \geq 5$. □

When $p = 3$, the law of repetition for 3 in $\{D_n\}$ is given below.

Theorem 6. Let $\nu_3(D_n) \geq 1$.

1. If $\nu_3(U_n) \geq \nu_3(W_n - 6R^n) > 1$, then $\nu_3(D_{3n}) = \nu_3(D_n) + 2$.
2. If $\nu_3(U_n) \geq \nu_3(W_n - 6R^n) = 1$, then $\nu_3(D_{3n}) \geq \nu_3(D_n) + 2$.
3. If $\nu_3(U_n) < \nu_3(W_n - 6R^n)$, then

$$\nu_3(D_{3n}) = \nu_3(D_n) + 3 \text{ when } \nu_3(D_n) > 1$$

or

$$\nu_3(D_{3n}) \geq \nu_3(D_n) + 3 \text{ when } \nu_3(D_n) = 1.$$ □

Proof. These results can be easily proved by making use of the the triplication formulas (13) and (14).

In the case of $p = 2$, there exists a rather complicated law of repetition for p in $\{D_n\}$. We will not provide the complete law here, but we remark that if $\nu_2(D_n) > 1$, then the duplication formulas (12) can be used to show that $\nu_2(D_{2n}) \geq \nu_2(D_n) + 1$. The case of $\nu_2(D_n) = 1$, however, is more problematical. Certainly, if $2 \| R$, there is no law of repetition for 2 in $\{D_n\}$ by Proposition 3. Thus, we need only consider the case of $2 \| D_n$ and $2 \nmid R$. In this case, we can use the duplication and triplication formulas to find that if
i) $4 \mid U_n$, $2 \mid W_n - 6R^n$;

ii) $2 \mid U_n$, $2 \mid W_n - 6R^n$, $2 \mid \Delta$;

iii) $2 \mid U_n$, $4 \mid W_n - 6R^n$, $2 \nmid \Delta$;

then $4 \mid D_{3n}$ and $4 \nmid D_{2n}$. In all other cases we have $4 \mid D_{2n}$.

We also have the following companion result to the law of repetition for any odd prime in \{\{D_n\}\}.

Theorem 7. If p is odd and $\nu_p(D_n) \geq 1$, then $\nu_p(D_{mn}) = \nu_p(D_n)$ whenever $p \nmid m$.

Proof. Since $p \neq 2$, we have $p^{2\lambda} \mid F_n$ when $\lambda = \nu_p(D_n)$, $\gcd(p, R) = 1$ and $W_n \equiv 6R^n$ (mod p^λ). It follows from (16) that

$$W_{mn} \equiv 2R^{mn}L_m(W_n/2R^n) \equiv 2R^{mn}L_m(3) \equiv 6R^{mn} \pmod{p^\lambda}$$

and by (15) that

$$U_{mn}/U_n \equiv R^{n(m-1)}K_m(3) \equiv m^3R^{n(m-1)} \pmod{p^\lambda}.$$

Since $p \nmid m$, it follows that $p^\lambda \mid U_{mn}$ and $p^\lambda \mid W_{mn} - 6R^{mn}$; hence $p^\lambda \mid D_{mn}$.

In the case of $p = 2$, Theorem 7 is not in general true when $\lambda = 1$ and $2 \nmid R$, as we have seen in the above remarks. Of course, we could eliminate this problem if we could impose additional restrictions on S_1, S_2, R such that none of i), ii) or iii) could occur. If $2 \mid D_n$ and $2 \nmid R$, it is easy to show that cases i), ii) or iii) can occur if and only if $2 \mid \tilde{Q}_n$, where $\tilde{Q}_n = (W_n^2 - \Delta U_n^2)/4$. In a later section we will discuss the parity of \tilde{Q}_n when $2 \mid D_n$. Note that if $4 \mid D_n$, then $2 \mid R$ and $\tilde{Q}_n \equiv 1 \pmod{2}$. If $\lambda > 1$, then we certainly have $2^\lambda \mid D_{mn}$ by Theorem 4 and since $W_n/2R^n \equiv 3 \pmod{2^\lambda-1}$, we get

$$U_{mn}/U_n \equiv m^3R^{n(m-1)} \pmod{2^{\lambda-1}}.$$

Thus, if m is odd, then $2 \nmid U_{mn}/U_n$ and $2^\lambda \mid D_{mn}$. Hence Theorem 7 is true when $p = 2$ and $\nu_2(D_n) > 1$.

We conclude this section with a result that is often useful.

Theorem 8. If m, $n \geq 1$, then $\gcd(U_{mn}/U_n, D_n) \mid 2m^3$.

Proof. It is easy to show this when $2 \nmid D_n$ because $D_n \mid F_n$ and $\gcd(D_n, R) = 1$. Suppose $2 \mid D_n$; then because $U_n/2 \mid F_n$, we have $D_n/2 \mid F_n$. Also, $\gcd(D_n/2, R) = 1$ by Propositions 2 and 3. Hence, by (15)

$$U_{mn}/U_n \equiv m^3R^{n(m-1)} \pmod{D_n/2}.$$

It follows that

$$\gcd(U_{mn}/U_n, D_n/2) \mid m^3$$

and

$$\gcd(U_{mn}/U_n, D_n) \mid 2m^3.$$

\[\square \]
3 The law of apparition for \(m \) in \(\{D_n\} \)

In this section we deal with the problem of when \(m \mid D_n \), when \(m > 1 \). We note that if \(p \) is an odd prime and \(p \mid R \), then \(p \nmid D_n \) \((n \geq 0)\) by Proposition 2. Thus, we may assume that if \(m \) is odd, then \(\gcd(m, R) = 1 \). We define \(\omega = \omega(m) \), if it exists, to be the least positive value of \(n \) such that \(m \mid D_n \). We call \(\omega \) the rank of apparition of \(m \) in \(\{D_n\} \).

We begin by examining the case where \(m \) is a prime \(p \) where \(p \mid d \) and \(p \nmid 2R \).

Theorem 9. Let \(p \) be any prime such that \(p \nmid 2R \) and \(p \mid d \). There exists a rank of apparition \(\omega \) of \(p \) in \(\{D_n\} \) and if \(p \mid D_n \) for some \(n \geq 0 \), then \(\omega \mid n \). Also, \(\omega = p \) or \(\omega \mid p \pm 1 \).

Proof. By results in the early part of [3, §9], we know that if \(p \mid S_1^2 - 3S_2 \), then \(p \) has a simple rank of apparition \(r_1 \) in \(\{U_n\} \). It is not difficult to show that \(p \mid D_n \) if and only if \(r_1 \mid n \); hence, \(\omega = r_1 \). If \(p \nmid S_1^2 - 3S_2 \), then \(p \) can have two ranks of apparition in \(\{U_n\} \) when \(p \nmid \Delta \) and only one when \(p \mid \Delta \). In either case, it is a simple matter to show that there is a rank of apparition \(\omega \) of \(p \) in \(\{D_n\} \), that \(\omega \neq p \) and that if \(p \mid D_n \), then \(\omega \mid n \).

We next consider the case of \(p = 3 \) and \(3 \nmid d \).

Lemma 10. If \(p = 3 \) and \(3 \nmid dR \), then \(\omega = \omega(3) \) always exists in \(\{D_n\} \) and if \(3 \mid D_n \), then \(\omega \mid n \).

Proof. We see from [3, Table 2] that there is single rank of apparition \(r \) of \(3 \) in \(\{U_n\} \). From the duplication formulas we see that if \(3 \mid U_n \) and \(3 \nmid W_n \), then \(3 \mid W_{2n} \) if and only if \(W_n \equiv R^n \) \((\text{mod} \ 3)\) and \(3 \mid W_{4n} \) if and only if \(W_n \equiv -R^n \) \((\text{mod} \ 3)\). Thus, \(\omega(3) \) always exists and \(\omega = r \), \(2r \) or \(4r \). Furthermore, if \(3 \mid D_n \), then \(\omega \mid n \).

There remains the case of odd \(p \) where \(p \nmid 3dR \). We first need to establish a simple lemma in this case. Here and in the sequel we will denote by \(\mathbb{K}_p \) the splitting field of \(G(x) \in \mathbb{F}_p[x] \).

We can denote the zeros of \(G(x) \in \mathbb{F}_p[x] \) by \(R_{\gamma_i} \) and \(R/\gamma_i \) \((i = 1, 2, 3)\).

Lemma 11. If \(p \nmid 2\Delta R \), then \(p \mid D_n \) if and only if \(\gamma_1^n = \gamma_2^n = \gamma_3^n = 1 \) in \(\mathbb{K}_p \).

Proof. Certainly, if \(\gamma_1^n = \gamma_2^n = \gamma_3^n = 1 \) in \(\mathbb{K}_p \), then \(p \mid W_n - 6R^n \) and \(p \mid U_n \) by (2) and (3); hence, \(p \mid D_n \). If \(p \nmid D_n \), then since \(p \mid U_n \) and \(p \nmid \Delta \), we may assume without loss of generality that \(\gamma_1^n = 1 \). By [3, (8.4)], we have \(\gamma_2^n - 1 = 0 \) and therefore \(\gamma_3^n = 1/(\gamma_1^n\gamma_2^n) = 1 \).

Corollary 12. If \(p \nmid 2\Delta R \) and \(\omega = \omega(p) \) exists for \(p \) in \(\{D_n\} \), then \(p \mid D_n \) if and only if \(\omega \mid n \).

Proof. Certainly \(p \mid D_n \) when \(\omega \mid n \) because \(\{D_n\} \) is a divisibility sequence. Suppose next that \(\omega \nmid n \) and \(p \mid D_n \). In this case we have \(n = qw + r \), where \(0 < r < \omega \). Also, by the lemma we must have \(\gamma_1^n = \gamma_2^n = \gamma_3^n = 1 \), \(\gamma_1^n = \gamma_2^n = \gamma_3^n = 1 \in \mathbb{K}_p \). It follows that \(\gamma_1^n = \gamma_2^n = \gamma_3^n = 1 \) in \(\mathbb{K}_p \) and \(p \mid D_r \), which contradicts the definition of \(\omega \).
We now deal with the case of \(p \nmid 6dR \). Under this condition, we say that \(p \) is an S-prime, Q-prime or I-prime if the splitting field of \(g(x) \in \mathbb{F}_p[x] \) is \(\mathbb{F}_p, \mathbb{F}_{p^2}, \) or \(\mathbb{F}_{p^3} \), respectively. The following theorem follows easily from Lemma 11 and results in [3, §9].

Theorem 13. If \(p \) is a prime, \(p \nmid 6dR \) and \(\epsilon = (\Delta/p) \), then

\[
p \mid D_{p-\epsilon} \text{ when } p \text{ is an S-prime},
\]

\[
p \mid D_{p^2-1} \text{ when } p \text{ is a Q-prime},
\]

\[
p \mid D_{p^2+\epsilon p+1} \text{ when } p \text{ is an I-prime}.
\]

We can now assemble the above results in the following theorem.

Theorem 14. If \(p \nmid 2R \), there exists a rank of apparition \(\omega (\leq p^2 + p + 1) \) of \(p \) in \(\{D_n\} \) and if \(p \mid D_n \), then \(\omega \mid n \).

In [2, §4.6], S-, Q-, I-primes are discussed with respect to the polynomial \(h(x) \in \mathbb{F}_p[x] \). We next show that if \(S_1, S_2 \) are given by (6), then the splitting fields of \(h(x) \) and \(g(x) \in \mathbb{F}_p[x] \) are the same whenever \(p \nmid 1 \). We let \(\mathbb{L}_1 \) denote the splitting field of \(h(x) \in \mathbb{F}_p[x] \), \(\mathbb{L}_2 \) denote the splitting field of \(g(x) \in \mathbb{F}_p[x] \) and let \(\alpha, \beta, \gamma \) denote the zeros of \(h(x) \) in \(\mathbb{L}_1 \). Since the zeros of \(g(x) \in \mathbb{F}_p[x] \) are given by

\[
\rho_1 = \gamma(\alpha^2 + \beta^2), \quad \rho_2 = \alpha(\beta^2 + \gamma^2), \quad \rho_3 = \beta(\alpha^2 + \gamma^2),
\]

we see that \(\rho_1, \rho_2, \rho_3 \in \mathbb{L}_1 \). If \(\mathbb{L}_1 = \mathbb{F}_p \), then clearly \(\mathbb{L}_2 = \mathbb{F}_p = \mathbb{L}_1 \). If \(\mathbb{L}_1 = \mathbb{F}_{p^2} \), then \((\Delta/p) = -1 \) and by (11), we get \((d/p) = (\Gamma \Delta/p) = (\Delta/p) = -1 \); hence, \(\mathbb{L}_2 = \mathbb{F}_{p^2} = \mathbb{L}_1 \). If \(\mathbb{L}_1 = \mathbb{F}_{p^3} \), then \((d/p) = 1 \) and \(\mathbb{L}_2 \neq \mathbb{F}_{p^2} \). Consider

\[
\rho_1 = \gamma(P^2 - 2Q) - \gamma^3 \in \mathbb{L}_1.
\]

We have

\[
\rho_1^p = \gamma^p(P^2 - 2Q) - \gamma^{3p} = \alpha(P^2 - 2Q) - \alpha^3.
\]

Thus, if \(\rho_1 = \rho_1^p \), then since \(\alpha \neq \gamma \) we must have

\[
\alpha^2 + \alpha \gamma + \gamma^2 = P^2 - 2Q
\]

and \(\beta^2 = \alpha \gamma \) or \(\beta^3 = R \). From (1), we get \(P \beta - Q = 0 \) and \(P^3 \beta - Q^3 = 0 \), which is impossible because \(p \nmid 1 \). Thus, \(\rho_1 \neq \rho_1^p \), and therefore \(\mathbb{L}_2 = \mathbb{F}_{p^3} = \mathbb{L}_1 \).

We have not yet discussed the case of \(p = 2 \). The reason for this is easily seen in [3, Table 1]. We first observe that if \(2 \mid R, 2 \nmid S_1 \) and \(2 \mid S_2 \), then \(\omega(2) \) does not exist. Next, if \(2 \mid S_1 \) and \(2 \nmid S_2 R \), then \(\omega(2) = 2 \) by definition, but we also have \(2 \mid D_3 \) and \(\omega(2) \nmid 3 \). Thus to truly have a rank of apparition of 2 in the sense of the results given above we should eliminate the possibility that \(2 \mid S_1 \) and \(2 \nmid S_2 R \). When we do this, then by Proposition 2 we have \(\omega(2) \) given by Table 1.
If \(p \nmid 2R \), then \(p \) has a rank of apparition \(\omega \) in \(\{D_n\} \); we now deal with the case when \(m = p^\alpha \) and \(\alpha > 1 \). By the law of repetition we know that \(p^\alpha \mid D_n \) for some \(n > 0 \); hence \(\omega(p^\alpha) \) must exist. If we put \(\omega = \omega(p) \), then since \(p \mid D_{\omega(p^\alpha)} \), we must have \(\omega \mid \omega(p^\alpha) \) by Theorem 14. Put \(s = \omega(p^\alpha)/\omega \) and let \(p^\nu \mid s \), then \(s = p^\nu t \), where \(p \nmid t \). If \(p^\lambda \mid D_{p^\nu \omega} \) and \(\lambda < \alpha \), then \(p^\lambda \mid D_{p^\nu \omega} \) by Theorem 7, which is a contradiction; thus \(\omega(p^\alpha) = p^\nu \omega \). Notice that \(\nu \) is the least positive integer such that \(p^\alpha \mid D_{p^\nu \omega} \).

Next, suppose that \(2 \nmid m \) and the prime power decomposition of \(m \) is

\[
m = \prod_{i=1}^{k} p_i^{a_i};
\]

we must have

\[
\omega(m) = \text{lcm}(\omega(p_i^{a_i}) : i = 1, 2, \ldots, k).
\]

Thus, if \((m, 2R) = 1\), then \(\omega(m) \) always exists and is given by (17).

4 The auxiliary sequences \(\{U_n^*\} \) and \(\{W_n^*\} \)

In order to prove some results concerning \(\{U_n\} \) and \(\{W_n\} \), it is often useful to make use of the auxiliary sequences \(\{U_n^*\} \) and \(\{W_n^*\} \). We put \(\gamma_1^* = \gamma_2/\gamma_1, \gamma_2^* = \gamma_3/\gamma_2, \gamma_3^* = \gamma_1/\gamma_3, R^* = R^2 \) and define

\[
V_n^* = R^{\gamma_1}(1 + \gamma_1^*n)(1 + \gamma_2^*n)(1 + \gamma_3^*n),
\]

\[
U_n^* = R^{\gamma_1-1}(1 - \gamma_1^*n)(1 - \gamma_2^*n)(1 - \gamma_3^*n)/((1 - \gamma_1^*)(1 - \gamma_2^*)(1 - \gamma_3^*)),
\]

\[
W_n^* = V_n^* - 2R^{\gamma_1},
\]

where

\[
\Delta^* = R^{\gamma_2}(1 - \gamma_1^*)^2(1 - \gamma_2^*)^2(1 - \gamma_3^*)^2 = \Gamma \neq 0.
\]

Notice also that

\[
\Gamma^* = R^{\gamma_4^*}(\gamma_1^* - \gamma_2^*)^2(\gamma_2^* - \gamma_3^*)^2(\gamma_3^* - \gamma_1^*)^2
\]

\[
= \Delta^2 U_3^2.
\]

If we put \(\gamma_1^* = \gamma_2^*/\gamma_1^* = 1/\gamma_2^* \), then \(\gamma_1^* = 1/\gamma_2^* \). We also have
\[
\gamma_2^* = \gamma_3^*/\gamma_2^* = 1/\gamma_3^* \quad \gamma_3^* = \gamma_1^*/\gamma_3^* = 1/\gamma_1^*.
\]

hence,

\[
W_n^{**} = R^nW_{3n}, \quad U_n^{**} = R^{n-1}U_{3n}/U_3.
\]

If we put \(\rho_i^* = R^*(\gamma_i^* + 1/\gamma_i^*) \) \((i = 1, 2, 3)\), we get

\[
S_1^* = \rho_1^* + \rho_2^* + \rho_3^* = S_2 - RS_1
\]

(20)
and

\[S_2^* = \rho_1^* \rho_2^* + \rho_2^* \rho_3^* + \rho_3^* \rho_1^* = RW_3 + R^2 S_1^* \]
\[= RS_1^3 - 3RS_1 S_2 + 3R^2 S_1 - 5R^2 S_2 - 4R^3 S_1 - 12R^4. \quad (21) \]

Also,

\[S_3^* = \rho_1^* \rho_2^* \rho_3^* \]
\[= R^* S_1^2 - 2R^* S_2^* - 4R^3. \]

It follows, then, from the results mentioned in §1, that if we compute the initial values of \(U_n^* \) and \(W_n^* (= V_n^* - 2R^* n) \) by replacing \(R, S_1, S_2 \) by \(R^*, S_1^*, S_2^* \), respectively, then we have both \(\{U_n^*\} \) and \(\{W_n^*\} \) to be linear recurrence sequences of order 6 with characteristic polynomial \(G^*(x) \) and \(\{U_n^*\} \) is a divisibility sequence. It is easy to show as well that \(W_{n+1}^* = W_n^*/R^{2n} \) and \(U_{n+1}^* = -U_n^*/R^{2n} \). We observe further that \(\gcd(S_1^*, S_2^*, S_3^*) = 1 \) if and only if \(\gcd(S_1, S_2, S_3) = 1 \). Thus, the sequences \(\{U_n^*\} \) and \(\{W_n^*\} \) have the same properties as \(\{U_n\} \) and \(\{W_n\} \) with \(R, S_1, S_2 \), replaced by \(R^*, S_1^*, S_2^* \), respectively.

We have shown how to relate the \(\{U_n^*\} \) and \(\{W_n^*\} \) sequences to \(\{U_n\} \) and \(\{W_n\} \) in (19); we can also relate the \(\{U_n^*\} \) and \(\{W_n^*\} \) sequences to \(\{U_n\} \) and \(\{W_n\} \). We define \(\rho_i^{(n)} = R^n(\gamma_i^n + 1/\gamma_i^n) \) \((i = 1, 2, 3)\) and find that

\[S_1^{(n)} = \rho_1^{(n)} + \rho_2^{(n)} + \rho_3^{(n)} = W_n \]

and

\[S_2^{(n)} = \rho_1^{(n)} \rho_2^{(n)} + \rho_2^{(n)} \rho_3^{(n)} + \rho_3^{(n)} \rho_1^{(n)} = W_n^* + R^n W_n. \quad (23) \]

Since

\[\Delta U_n^2 = R^{2n}(1 - \gamma_1^n)^2(1 - \gamma_2^n)^2(1 - \gamma_3^n)^2 \]
\[= (S_1^{(n)})^2 - 4S_2^{(n)} + 4R^n S_1^{(n)} - 12R^{2n}, \]

we get

\[\Delta U_n^2 = W_n^2 - 4W_n^* - 12R^{2n} \quad (24) \]

using (22) and (23). This formula, which generalizes (8), is similar to the well-known Lucas function identity

\[v_n^2 - \delta u_n^2 = 4q^n. \]

Note also that we get

\[\tilde{Q}_n = W_n^* + 3R^n \]

from (24) and

\[4W_n^* = W_n^2 - \Delta U_n^2 - 12R^{2n}, \]

11
the relation connecting \(W_n^*\) to \(W_n\) and \(U_n\). To relate \(U_n^*\) to \(W_n\) and \(U_n\) is somewhat more complicated. From (24), we have

\[
\Delta^*U_{n}^{*2} = W_{n}^{*2} - 4W_{n}^{**2} - 12R^{*2n}.
\]

Hence, from (18), (19), and (24), we get

\[
\Gamma U_{n}^{*2} = ((W_{n}^{*2} - \Delta U_{n}^{*2})/4 - 3R^{2n})^{2} - 4R^{m}W_{3n} - 12R^{4n}.
\]

From (13), we find that

\[
16\Gamma U_{n}^{*2} = W_{n}^{4} - 16R^{m}W_{n}^{3} - 48R^{n}\Delta W_{n}U_{n}^{2} + 72R^{2n}W_{n}^{2} - 72R^{2n}\Delta U_{n}^{2} - 2\Delta W_{n}^{2} U_{n}^{2} + \Delta^{2} U_{n}^{4} - 432R^{4n}, \quad (26)
\]

a formula that generalizes (10).

As promised in §2 we will now investigate the parity of \(\bar{Q}_{n}\) when \(2 \nmid R\) and \(2 \mid D_{n}\). If \(2 \nmid S_{1}\) and \(2 \mid S_{2}\), then by (20) and (21), we have \(2 \nmid S_{1}^{*}\) and \(2 \mid S_{2}^{*}\). It follows that \(2 \mid U_{n}^{*}\) if and only if \(7 \mid n\) and \(2 \mid W_{n}^{*}\) when \(2 \mid D_{n}\). In this case we find from (25) that \(2 \mid \bar{Q}_{n}\) whenever \(2 \mid D_{n}\). If \(2 \nmid S_{1}\) and \(2 \mid S_{2}\), then \(2 \mid S_{1}^{*}\) and \(2 \mid S_{2}^{*}\); hence, \(2 \mid U_{n}^{*}\) if and only if \(2 \mid n\) and we get \(2 \mid W_{n}^{*}\), \(\bar{Q}_{n} \equiv 1 \pmod{2}\) whenever \(2 \mid D_{n}\). If \(2 \nmid S_{1}\) and \(2 \mid S_{2}\), then \(\Delta_{n} = \Gamma \equiv (S_{2} + R S_{1})^{2} \equiv 0 \pmod{4}\) from (10). Since \(4 \mid W_{n}^{*2} - \Delta U_{n}^{*2}\), we get \(2 \mid W_{n}^{*}\) and \(\bar{Q}_{n} \equiv 1 \pmod{2}\).

The only remaining case is \(2 \mid S_{1}\) and \(2 \nmid S_{2}\). In this case \(4 \mid \Delta\) and case (iii) can never occur. We get \(U_{2} \equiv S_{1} + 2 \pmod{4}\) and \(W_{2} - 6R^{2} \equiv 2 \pmod{4}\); thus, we see that cases (i) and (ii) can always occur, depending on the parity of \(S_{1}/2\). In either of these cases, we get \(4 \mid D_{6}\). It follows that if we eliminate the case of \(2 \mid S_{1}\) and \(2 \nmid S_{2} R\), then Theorem 7, will be true for all primes \(p\). Also, we have already seen in §3 that if we eliminate this case, then we have a rank of apparition \(\omega\) of \(2\) in \(\{D_{n}\}\) and \(2 \mid D_{n}\) if and only if \(\omega \mid n\); indeed, if \(\gcd(m, R) = 1\), there always exists a rank of apparition \(\omega\) of \(m\) in \(\{D_{n}\}\) given by (17) such that \(m \mid D_{n}\) if and only if \(\omega \mid n\). We remark here that if \(S_{1}\) and \(S_{2}\) are given by (6), then if \(2 \nmid R\) and \(2 \mid S_{1}\), we must have \(2 \mid S_{2}\). Thus, for the sequences \{\(c_{n}\)\} and \{\(w_{n}\)\} we cannot have the case of \(2 \mid S_{1}\) and \(2 \nmid S_{2} R\).

If \(p\) is an \(I\)-prime and \(p \equiv \epsilon = (\Delta/p) \pmod{3}\), then \(3 \mid p^{2} + \epsilon p + 1\). Since we know in this case that \(p \mid D_{p^{2}+\epsilon p+1}\), it is of some interest to determine a criterion for deciding whether or not \(p \mid D_{(p^{2}+\epsilon p+1)/3}\). Roettger showed for the case of the \{\(c_{n}\)\} and \{\(w_{n}\)\} sequences that \(p \mid D_{(p^{2}+\epsilon p+1)/3} \quad (\epsilon = 1 \text{ in this case if } p \text{ is an I-prime})\) if and only if \(R^{(p-1)/3} \equiv 1 \pmod{p}\) in [2, Theorem 5.14]. In what follows we will extend this result to the \{\(U_{n}\)\} and \{\(W_{n}\)\} sequences. We begin with three preliminary lemmas.

Lemma 15. If \(3W_{1}^{2} \equiv -\Delta \pmod{p}\), then \(p\) cannot be an \(I\)-prime.

Proof. We have \(W_{1} = S_{1}\) and by (8) we find that

\[
S_{2} \equiv RS_{1}^{2} - 2RS_{1} - 4R^{3} \pmod{p}
\]
and by (5)
\[S_3 \equiv -RS_1^2 - 2R^2S_1 + 2R^3 \pmod{p}. \]

Hence
\[g(x) \equiv (x + R)(x^2 - (S_1 + R)x + S_1^2 + 2RS_1 - 2R^2) \pmod{p}. \]

Since \(g(x) \) is reducible modulo \(p \), \(p \) cannot be an I-prime.

Lemma 16. Let \(p \) be an I-prime and let \(\mathbb{K}_p \) be the splitting field of \(G(x) \in \mathbb{F}[x] \). If \(\zeta \) is a primitive cube root of unity in \(\mathbb{K}_p \), then in \(\mathbb{K}_p \) we can have
\[\zeta^k(\gamma_1 + \gamma_2 + \gamma_3) + \zeta^{-k}(\gamma_1^{-1} + \gamma_2^{-1} + \gamma_3^{-1}) = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_1^{-1} + \gamma_2^{-1} + \gamma_3^{-1} \quad (27) \]
if and only if \(3 | k \).

Proof. If \(3 | k \) it is trivial that (27) must hold. If \(3 \nmid k \), we first observe that
\[\zeta^k + \zeta^{-k} = -1 \]
and we have
\[\zeta^k + 1/2 = (\zeta^k - \zeta^{-k})/2, \quad \zeta^{-k} + 1/2 = (\zeta^{-k} - \zeta^k)/2. \]
Thus (27) can hold only if
\[\frac{\zeta^k - \zeta^{-k}}{2}(\gamma_1 + \gamma_2 + \gamma_3 - \gamma_1^{-1} - \gamma_2^{-1} - \gamma_3^{-1}) = \frac{3}{2}(\gamma_1 + \gamma_2 + \gamma_3 + \gamma_1^{-1} + \gamma_2^{-1} + \gamma_3^{-1}). \]

On multiplying both sides by \(2R \) and squaring we find that
\[3W_1^2 \equiv -\Delta \pmod{p}, \]
which by the previous lemma is impossible.

Lemma 17. If \(p \) is an I-prime and \(p \mid U_n \), then \(p \mid D_n \).

Proof. Since \(p \mid U_n \), we must have \(\gamma_i^n = 1 \) in \(\mathbb{K}_p \) for some \(i \in \{1, 2, 3\} \) by (2). We may assume that \(\gamma_1^n = 1 \). From the proof of [3, Theorem 9.8], we have \(1 = \gamma_1^{1n} = \gamma_2^{1n} \); hence, \(\gamma_2^n = 1 \) and \(\gamma_3^n = 1/(\gamma_1^n \gamma_2^n) = 1 \). The result now follows by Lemma 11.

We are now able to derive our criterion for when \(p \mid D_{(p^2 + \epsilon p + 1)/3} \).

Theorem 18. If \(p \) is an I-prime and \(p \equiv \epsilon \pmod{3} \), then \(p \mid D_{(p^2 + \epsilon p + 1)/3} \) if and only if
\[W^*_{(p-\epsilon)/3} \equiv R^{2(p-\epsilon)/3-1}W_1 \pmod{p}. \]

Proof. We first note by Lemma 17 and 11 that \(p \mid U_{(p^2 + \epsilon p + 1)/3} \) if and only if \(\gamma_i^{(p^2 + \epsilon p + 1)/3} = 1 \) in \(\mathbb{K}_p \) for all \(i \in \{1, 2, 3\} \). Since \(\gamma_1^{p^2 + \epsilon p + 1} = 1 \) in \(\mathbb{K}_p \), we must have
\[\frac{\gamma_1^{p^2 + \epsilon p + 1}}{3} = \zeta^k, \]
where ζ is a primitive cube root of unity in \mathbb{K}_p. It follows that $p \mid D_{(p^2+\epsilon p+1)/3}$ if and only if $3 \mid k$. Now

$$(p^2 + \epsilon p + 1)/3 = (p - \epsilon)(p + 2\epsilon)/3 + 1.$$

Hence,

$$\zeta^k = \gamma_1^{(p^2+\epsilon p+1)/3} = \gamma_1^{p+2\epsilon}(p-\epsilon)/3 \gamma_1.$$

Since $\gamma_1^p = \gamma_2^{\epsilon}$ (see the proof of [3, Theorem 9.8]), we get

$$\zeta^k = (\gamma_2 \gamma_1^2)^{\epsilon(p-\epsilon)/3} \gamma_1 = \gamma_3^{\epsilon(p-\epsilon)/3} \gamma_1$$

and

$$\gamma_3^{\epsilon(p-\epsilon)/3} = (\zeta^k / \gamma_1)^\epsilon.$$

Since $\gamma_3^p = \gamma_1^p / \gamma_3^p = \gamma_2^\epsilon / \gamma_1^\epsilon = \gamma_1^{\epsilon^p}$, we get

$$\gamma_1^{\epsilon^p(p-\epsilon)/3} = (\zeta^{kp}/\gamma_1^p)^\epsilon = \zeta^k / \gamma_2$$

and

$$\gamma_1^{\epsilon(p-\epsilon)/3} = (\zeta^k / \gamma_2)^\epsilon.$$

Similarly $\gamma_2^{\epsilon(p-\epsilon)/3} = (\zeta^k / \gamma_3)^\epsilon$. It follows that

$$W_{(p-\epsilon)/3}^* = R^{\epsilon(p-\epsilon)/3}[\zeta^{-k\epsilon}(\gamma_1^\epsilon + \gamma_2^\epsilon + \gamma_3^\epsilon) + \zeta^{k\epsilon}(\gamma_1^{-\epsilon} + \gamma_2^{-\epsilon} + \gamma_3^{-\epsilon})].$$

By Lemma 16, we see that $3 \mid k$ if an only if

$$W_{(p-\epsilon)/3}^* \equiv R^{2(p-\epsilon)/3-1} W_1 \pmod{p}.$$

This criterion can easily be converted to one that involves only the $\{U_n\}$ and $\{W_n\}$ sequences by using (24). At first glance, the criterion of Theorem 18 does not resemble the more elegant rule for $p \mid D_{(p^2+\epsilon p+1)/3}$ when dealing with Roettger’s sequences. In this case we have $\gamma_1 = \alpha / \beta$, $\gamma_2 = \beta / \gamma$, $\gamma_3 = \gamma / \alpha$ and $R = \alpha \beta \gamma$. We can deduce Roettger’s rule in the following corollary of Theorem 18.

Corollary 19. Suppose $D_n = \gcd(w_n - 6R^n, c_n)$ and p is an I-prime with respect to $h(x) \in \mathbb{F}_p[x]$, then if $p \equiv 1 \pmod{3}$, we have

$$p \mid D_{(p^2+\epsilon p+1)/3} \iff R^{(p-1)/3} \equiv 1 \pmod{p}.$$

14
Proof. Suppose first that \(p \nmid \Gamma \). In this case \(p \) is an I-prime with respect to \(g(x) \in \mathbb{F}_p[x] \) and \(1 = (d/p) = (\Gamma \Delta/p) = (\Delta/p) = \epsilon \). By Theorem 18 we have \(p \mid D_n^{(\epsilon)/3} \) if and only if \(W_{(n-\epsilon)/3}^{*} \equiv R^{2(\epsilon-\epsilon)\epsilon}/\mathbb{W}_1 \) (mod \(p \)). But in \(\mathbb{K}_p \), we have \(\gamma_1^* = \gamma_2/\gamma_1 = \beta^2/(\alpha \gamma) = \beta^3/R; \) hence,

\[
\gamma_1^{\frac{p-1}{3}} = \beta^{p-1}/R^{(p-1)/3} = (\alpha/\beta)/R^{(p-1)/3} = \gamma_2^{-1}/R^{(p-1)/3}.
\]

Similarly, \(\gamma_2^{\frac{p-1}{3}} = \gamma_3^{-1}/R^{(p-1)/3} \), \(\gamma_3^{\frac{p-1}{3}} = \gamma_1^{-1}/R^{(p-1)/3} \). It follows that

\[
W_{(n-\epsilon)/3}^{*} = R^{(p-1)/3}(R^{(p-1)/3}(\gamma_1 + \gamma_2 + \gamma_3) + R^{-(p-1)/3}(\gamma_1^{-1} + \gamma_2^{-1} + \gamma_3^{-1}))
\]

and by Lemma 16 \(W_{(n-\epsilon)/3}^{*} \equiv R^{2(\epsilon-\epsilon)/3}/\mathbb{W}_1 \) (mod \(p \), if and only if \(R^{(p-1)/3} = 1 \) in \(\mathbb{K}_p \).

Suppose next that \(p \nmid P \). In this case, \(p \) cannot be an I-prime with respect to \(g(x) \). If \(p \nmid P \), then by (11) we have \(R \equiv (Q/P)^3 \) (mod \(p \)) and \(h(Q/P) \equiv 0 \) (mod \(p \)). In this case \(p \) is not an I-prime with respect to \(h(x) \), a contradiction. If \(p \mid P \), then \(p \mid Q \) and \(\alpha^3 = \beta^3 = \gamma^3 = R \) in \(\mathbb{L}_1 \). We have \(\alpha^p = 1 = \beta^p = \gamma^p = R^{(p-1)/3} \) and if \(R^{(p-1)/3} = 1 \) (mod \(p \)), we get \(\alpha^p = \alpha \), and \(p \) is not an I-prime with respect to \(h(x) \in \mathbb{F}_p[x] \), a contradiction. Now \(p \mid D_3 \) and since \(3 \nmid (p^2 + \epsilon p + 1)/3 \), we have \(p \nmid D_n^{(\epsilon)/3} \). Thus, if \(p \) is an I-prime with respect to \(h(x) \in \mathbb{F}_p[x] \), then \(R^{(p-1)/3} \neq 1 \) (mod \(p \)) and \(p \nmid D_n^{(\epsilon)/3} \).

We conclude this section with the following result concerning

\[
D_n^* = \gcd(W_n^* - 6R^n, U_n).
\]

Theorem 20. If \(p \) is an I-prime and \(p \equiv \epsilon \) (mod 3), then \(p \mid D_n^{(\epsilon)/3} \).

Proof. We observe as above that \(\gamma_1^* = \gamma_2/\gamma_1 \) and

\[
(p^2 + \epsilon p + 1)/3 = (p - \epsilon)(p + 2\epsilon)/3 + 1.
\]

Hence

\[
\gamma_1^{(p^2+\epsilon p+1)/3} = (\gamma_2/\gamma_1)((\gamma_2/\gamma_1)^{p+2\epsilon}(p-\epsilon)/3
\]

in \(\mathbb{K}_p \). Now \(\gamma_2^p = \gamma_3^p = \gamma_2^p \), hence,

\[
(\gamma_2/\gamma_1)^{p+2\epsilon} = (\gamma_2\gamma_3^\epsilon/\gamma_1^2) = \gamma_1^{-3\epsilon}.
\]

It follows that

\[
((\gamma_2/\gamma_1)^{p+2\epsilon}(p-\epsilon)/3 = \gamma_1^{-\epsilon(p-\epsilon)} = \gamma_1/\gamma_2
\]

and

\[
\gamma_1^{(p^2+\epsilon p+1)/3} = 1.
\]

Hence, \(p \mid D_n^{(\epsilon)/3} \). \qed
5 Some properties of \(\{E_n\} \)

We will devote the major portion of this section to the proof that if \(p > 3 \) is a prime and \(p \mid E_n \), then \(p \equiv (\Gamma/p) \pmod{3} \). This generalizes [2, Theorem 6.2]. We observe that by Proposition 2 we have \(\gcd(E_n, R) = 2 \). We now need some preliminary results.

Lemma 21. Let \(p \) be any prime such that \(p > 3 \). If \(p \mid E_n \), then in \(\mathbb{K}_p \) we must have

\[
\gamma_i^n = 1, \quad \gamma_j^n + \gamma_j^n + 1 = 0,
\]

where \(i \in \{1, 2, 3\} \) and all \(j \in \{1, 2, 3\} \) such that \(j \neq i \).

Proof. If \(p \nmid \Delta \) and \(p \mid U_n \), we may assume with no loss of generality that \(\gamma_1^n = 1 \) in \(\mathbb{K}_p \). If \(p \mid \Delta \) we may assume with no loss of generality that \(\gamma_1 = 1 \) (and \(\gamma_2^n = 1 \)) in \(\mathbb{K}_p \). Now

\[
W_n = V_n - 2R^n = R^n(1 + \gamma_1^n)(1 + \gamma_2^n)(1 + \gamma_3^n) - 2R^n = 2R^n(\gamma_2^n + \gamma_2^n + \gamma_3^n) = 2R^n(1 + \gamma_2^n + 1/\gamma_2^n) = 2R^n(1 + 1/\gamma_3^n + \gamma_3^n),
\]

the latter results following from \(\gamma_1^n = 1 \) and \(\gamma_1^n \gamma_2^n \gamma_3^n = 1 \). Since \(W_n = 0 \) in \(\mathbb{K}_p \), we have \(\gamma_2^n + \gamma_2^n + 1 = \gamma_3^n + \gamma_3^n + 1 = 0 \).

Lemma 22. If \(p > 3 \) is a prime, then \(p \mid (E_n, \Gamma) \).

Proof. If \(p \nmid \Gamma \), then \(\gamma_1 = \gamma_2, \gamma_2 = \gamma_3 \) or \(\gamma_3 = \gamma_1 \) in \(\mathbb{K}_p \) by (10). If \(p \mid E_n \), then we may assume that \(\gamma_1^n = 1 \) and \(\gamma_2^n + \gamma_2^n + 1 = 0 \) in \(\mathbb{K}_p \) by Lemma 21. If \(\gamma_1 = \gamma_2 \), then \(\gamma_2^n = 1 \), which is impossible because \(p > 3 \). The same is true if \(\gamma_2 = \gamma_3 \) or \(\gamma_3 = \gamma_1 \).

Lemma 23. If \(p > 3 \) is a prime, \(p \mid \Delta \) and \(p \mid E_n \), then

\[
p \equiv (\Gamma/p) \pmod{3}.
\]

Proof. Since \(p \nmid \Delta \), we may assume with no loss of generality that \(\gamma_1 = 1 \) and therefore \(\gamma_2 \gamma_3 = 1 \) in \(\mathbb{K}_p = \mathbb{F}_p^2 \). Also, by Lemma 21 we may assume that if \(p \mid E_n \), then

\[
\gamma_2^n + \gamma_2^n + 1 = 0
\]

in \(\mathbb{K}_p \). Hence, \(\gamma_2^n = 1 \) and \(\gamma_2^n \neq 1 \) in \(\mathbb{K}_p \). By Lemma 22, \(p \nmid \Gamma \) and

\[
\Gamma^{p-1} = (\gamma_1 - \gamma_2)^{p-1}(\gamma_2 - \gamma_3)^{p-1}(\gamma_3 - \gamma_1)^{p-1} = \frac{(1 - \gamma_2^p)(\gamma_2 - \gamma_3)(\gamma_3 - 1)}{(1 - \gamma_2)(\gamma_2 - \gamma_3)(\gamma_3 - 1)}. \tag{28}
\]

If \(\gamma_2 \in \mathbb{F}_p \), then \(\Gamma^{p-1} = 1 \). Also, from \(\gamma_2^{pn} = \gamma_2^n \), we get \(\gamma_2^{(p-1)n} = 1 \), which, since \(\gamma_2^n \neq 1 \) means that \(3 \mid p - 1 \) and \(p \equiv (\Gamma/p) \pmod{3} \). If \(\gamma_2 \in \mathbb{F}_p^2 \setminus \mathbb{F}_p \), then \(\gamma_2^n = \gamma_3 \) and \(\gamma_2^{(p-1)n} = -1 \) by (28). Since \(\gamma_2^{pn} = \gamma_3^n = 1/\gamma_2^n \) and \(\gamma_2^{(p+1)n} = 1 \), we see that \(3 \mid p + 1 \) and \(p \equiv (\Gamma/p) \pmod{3} \). \(\square \)
We now show that if p is an I-prime, then $p \nmid E_n$.

Theorem 24. If p is an I-prime, then $p \nmid E_n$.

Proof. As noted above we know that if p is an I-prime, then $\gamma_1^p = \gamma_2^p = \gamma_3^p = \gamma_1^\ast$ in \mathbb{K}_p.

If $p \mid E_n$, then by Lemma 21, we have $\gamma_1^n = 1$ and $\gamma_2^{2n} + \gamma_2^n + 1 = 0$. Now $\gamma_2^{p^n} = \gamma_3^{p^n} = \gamma_1^n$ and $\gamma_2^{2n} = \gamma_1^n$. Hence,

$$0 = (\gamma_2^{2n} + \gamma_2^n + 1)^{p^2} = 3,$$

which is a contradiction. \(\square\)

We next deal with the case where $p \mid S_1 + 2R$.

Lemma 25. If $p \mid d$, $p \nmid S_1 + 2R$ and $p \mid E_n$, then

$$p \equiv (\Gamma/p) \pmod{3}.$$

Proof. Since $p \mid S_1 + 2R$ and $S_1 + 2R = R(\gamma_1 + 1)(\gamma_2 + 1)(\gamma_3 + 1)$, we may assume in \mathbb{K}_p that $\gamma_1 = -1$ and $\gamma_2\gamma_3 = -1$. We get

$$(\gamma_1 + \gamma_2)(\gamma_2 + \gamma_3)(\gamma_3 + \gamma_1) = -(\gamma_2^2 + 1/\gamma_2^2 - 2).$$

Since $S_1 \equiv -2R \pmod{p}$, we get $S_3 \equiv -2RS_2 \pmod{p}$ from (5) and

$$g(x) = (x + 2R)(x^2 + S_2) \in \mathbb{F}_p[x].$$

Since $\rho_1 = R(\gamma_1 + 1/\gamma_1) = -2R$, we get $\rho_2^2 = \rho_3^2 = -S_2$ and $\gamma_2^2 + 1/\gamma_2^2 = \rho_2^2/R^2 - 2 = -S_2/R^2 - 2 \in \mathbb{F}_p$. It follows that $(\gamma_1 + \gamma_2)(\gamma_2 + \gamma_3)(\gamma_3 + \gamma_1) \in \mathbb{F}_p$ and

$$((\gamma_1^2 - \gamma_2^2)(\gamma_2^2 - \gamma_3^2)(\gamma_3^2 - \gamma_1^2))^{p-1} = ((\gamma_1 - \gamma_2)^2(\gamma_2 - \gamma_3)^2(\gamma_3 - \gamma_1)^2)^{p-1} = (\Gamma/p).$$ \(\square\)

As $\gamma_2^2 + 1/\gamma_2^2 \in \mathbb{F}_p$, we must have $\gamma_2^2, 1/\gamma_2^2 \in \mathbb{F}_p$ and $\gamma_2^{p^n} = \gamma_2^2$ or $\gamma_2^{p^n} = \gamma_3^2$. Since $p \nmid d$, we see from (29), that $(\Gamma/p) = 1$, when $\gamma_2^{p^n} = \gamma_2^2$ and $(\Gamma/p) = -1$, when $\gamma_2^{p^n} = \gamma_3^2$.

If $p \mid E_n$, then by Lemma 21, we have $\gamma_i^n = 1$ for some $i \in \{1, 2, 3\}$ and $\gamma_2^{2n} + \gamma_2^n + 1 = 0$ $(i \neq j)$. Since $\gamma_1 = -1$, we see that $i = 1$ and $2 \mid n$. If $(\Gamma/p) = 1$, then $\gamma_2^{np} = \gamma_2^n$ and $\gamma_2^{n(p-1)} = 1$. Since $\gamma_3^{np} = 1$ and $\gamma_2^{np} \neq 1$, we see that $3 \mid p - 1$ and $p \equiv (\Gamma/p) \pmod{3}$. If $(\Gamma/p) = -1$, then $\gamma_2^{np} = \gamma_3^n = 1/\gamma_2^n$ and $\gamma_2^{n(p+1)} = 1$; hence $3 \mid p + 1$ and $p \equiv (\Gamma/p) \pmod{3}$. \(\square\)

We are now ready to prove our main result.

Theorem 26. If $p \mid d$, $p \nmid S_1 + 2R$ and $p \mid E_n$, then $p \equiv (\Gamma/p) \pmod{3}$.

17
Proof. We have already proved this result when \(p \mid d \) and when \(p \mid d \) and \(p \mid S_1 + 2R \). We may assume, then, that \(p \nmid d \) and \(p \nmid S_1 + 2R \). Since \(p \mid E_n \), \(p \) can only be an S-prime or a Q-prime by Theorem 24. If \(p \) is an S-prime, then \(1 = (d/p) = (\Delta/p)(\Gamma/p) \) and \((\Gamma/p) = e \); if \(p \) is a Q-prime, then \(-1 = (d/p) = (\Delta/p)(\Gamma/p) \) and \((\Gamma/p) = -e \). Suppose \(p \) is an S-prime. By results in the proof of [3, Theorem 9.4], we have \(\gamma^p = \gamma_i^p \) \((i = 1, 2, 3) \) in \(\mathbb{K}_p \). By Lemma 21, we get \(\gamma_2^{3n} = 1 \), \(\gamma_2^n \neq 1 \); also, \(\gamma_2^{np} = \gamma_2^{n+p} \) means that \(\gamma_2^{(p+1)n} = 1 \) and \(3 \mid p - \epsilon \). Similarly, if \(p \) is a Q-prime, then by the results in the proof of [3, Theorem 9.6], we have

\[
\begin{align*}
\gamma_2^p &= \gamma_3^p, \\
\gamma_3^p &= \gamma_3^p, \\
\gamma_4^p &= \gamma_1^p
\end{align*}
\]

in \(\mathbb{K}_p \). In this case we get \(\gamma_2^{p^n} = \gamma_3^{n+p} = (1/\gamma_2)^{p^n} \) and \(\gamma_2^{(p+1)n} = 1 \), \(\gamma_2^{3n} = 1 \) and \(\gamma_2^n \neq 1 \). Hence \(3 \mid p + \epsilon \) and in either case \(p \equiv (\Gamma/p) \pmod{3} \).

In order to extend Theorem 26, we need to prove the following result.

Theorem 27. For any \(n > 0 \), we have \(E_n \mid D_{3n} \).

Proof. We can rewrite (13) as

\[
W_{3n} - 6R^{3n} = (W_n - 6R^n)\tilde{Q}_n + \Delta W_n U_n^2, \tag{30}
\]

where \(\tilde{Q}_n = (W_n^2 - \Delta U_n)/4 \). Suppose \(p \) is any odd prime and \(p^\lambda \mid E_n \), where \(\lambda \geq 1 \). Since \(p^\lambda \mid U_n \), we must have \(p^\lambda \mid U_{3n} \). Also, \(p^{2\lambda} \mid \tilde{Q}_n \) and \(p^\lambda \mid W_{3n} - 6R^{3n} \) by (30). Next, suppose that \(2^\lambda \mid E_n \) and \(\lambda \geq 1 \). We have \(2 \mid W_n - 6R^n \) and \(2^{2\lambda-2} \mid \tilde{Q}_n \), \(2^\lambda \mid U_n \). By (30) we see that \(2^{2\lambda-1} \mid W_{3n} - 6R^{3n} \) and since \(\lambda \geq 1 \), we have \(2\lambda - 1 \geq \lambda \) and \(2^\lambda \mid D_{3n} \). Hence, \(E_n \mid D_{3n} \).

We next prove a result which is analogous to the theorem that states that if \(p \) is an odd prime and \(p \mid v_n \), then \(p \equiv \pm 1 \pmod{2^{v+1}} \), where \(2^{v} \mid n \). (See [2, Theorem 2.20]).

Theorem 28. If \(p \ (> 3) \) is a prime and \(p \mid E_n \), then \(p \equiv (\Gamma/p) \pmod{3^{v+1}} \), where \(3^v \mid n \).

Proof. Since \(p \mid E_n \) and \(p > 3 \), we have \(p \nmid D_{3n} \), as \(p \nmid 6R \). But, by Theorem 27, we know that \(p \nmid D_{3n} \). Thus, if \(\omega \) is the rank of apparition of \(p \) in \(\{D_n\} \), we have \(\omega \mid 3n \) and \(\omega \nmid n \). It follows that \(3^{v+1} \mid \omega \). Also, since \(p \) is not an I-prime and \(p \nmid 6R \), we must have \(\omega = p \) or \(\omega \mid p^2 - 1 \) by results in §3. Since \(3 \mid \omega \), we cannot have \(\omega = p \) and therefore \(\omega \mid p^2 - 1 \) and \(3^{v+1} \mid p^2 - 1 \). Since \(p \nmid \Gamma \), we have \(p^2 - 1 = (p - (\Gamma/p))(p + (\Gamma/p)) \) and \(3 \mid p - (\Gamma/p) \). Hence \(3^{v+1} \mid p - (\Gamma/p) \).

\[\Box\]

6 Primality tests

In Williams [4], it is shown how Lucas used the properties of \(\{u_n\} \) and \(\{v_n\} \) to develop primality tests for certain families of integers. In this section we will indicate how the properties of \(\{U_n\} \) and \(\{W_n\} \) can be used to produce some primality tests. We begin with a simple result concerning integers of the form \(A3^n + \eta \), where \(\eta^2 = 1 \).
Theorem 29. Let \(N = A3^n + \eta \), where \(2 \mid A \), \(n \geq 2 \), \(3 \nmid A \), \(\eta \in \{1, -1\} \) and \(A < 3^n \). If

\[
N \mid U_{N-\eta}/U_{(N-\eta)/3},
\]

then \(N \) is a prime.

Proof. Let \(p \) be any prime divisor of \(N \) and put \(m = (N - \eta)/3 \). We note that \(p \neq 2, 3 \) and by (14)

\[
4U_{3m}/U_m = 3W_m^2 + \Delta U_m^2.
\]

Since \(p \mid U_{3m} \), there must exist some rank of apparition \(r \) of \(p \) in \(\{U_n\} \) such that \(r \mid 3m \). If \(p \mid U_m \) and \(p \mid W_m \), then \(p \mid E_m \) and \(p \equiv (\Gamma/p) \pmod{3^n} \) by Theorem 28. If \(p \nmid U_m \), then \(r \nmid m \) and \(r \nmid 3m \) means that \(3^n \mid r \). Suppose \(p \nmid dR \). If \(p \) is an S-prime or a Q-prime, then by [3, Corollary 9.5 and Theorem 9.7] we must have \(r \mid p - \epsilon \), where \(\epsilon = (\Delta/p) \); hence \(p \equiv (\Delta/p) \pmod{3^n} \). If \(p \) is an I-prime, then \(r \mid p^2 + \epsilon p + 1 \) by Theorem 9.9 of [3]. Since \(9 \mid r \), this is impossible. If \(p \mid dR \), then \(r = 3, p \) or divides \(p \pm 1 \). Since \(9 \mid r \), \(r \neq 3 \) and since \(p \nmid N - \eta \), we cannot have \(r = p \). Thus, in all possible cases, we find that \(p \equiv \pm 1 \pmod{3^n} \) and since \(p \) is odd, we have \(p \geq 2 \cdot 3^n - 1 \). Since \((2 \cdot 3^n - 1)^2 > N \), \(N \) can only be a prime. \(\square \)

We also note that if \(N \) obeys the conditions in the first line of Theorem 29 and \(N \mid E_{(N-\eta)/3} \), then \(N \) must be a prime.

By extending the results in [2, Chapter 7] it is possible to select the parameters of \(S_1, S_2 \) to make Theorem 29 both a necessary and sufficient test for the primality of \(N \), but this test is much less efficient than one based on the Lucas Functions.

In [3, §9] several primality tests for \(N \) are presented. These tests can be easily proved by using the techniques in [2, Chapter 7], but to be usable they require that we know the complete factorization of

\[
N^2 + N + 1 \quad \text{or} \quad N^2 - N + 1.
\]

Of course, such a circumstance is very unlikely, but we might have a partial factorization of \(N^2 \pm N + 1 \). In what follows we will devise a test for the primality of \(N \) in this case. We first require a simple lemma.

Lemma 30. If \(p \) and \(q \) are distinct primes, \(p > 3 \) and \(p \mid D_{qn} \) and \(p \mid U_{qn}/U_n \), then \(q^{\lambda+1} \mid \omega \), where \(\omega \) is the rank of apparition of \(p \) in \(\{D_n\} \) and \(q^\lambda \parallel n \).

Proof. Suppose \(p \mid D_n \). If \(p \mid U_{qn}/U_n \), then by Theorem 8, we get \(p \mid 2q^3 \), which is impossible. Hence, \(p \nmid D_n \). It follows that since \(p \mid D_{qn} \) (\(\{D_n\} \) is a divisibility sequence), we get \(\omega \mid qn \) and \(\omega \nmid n \), which means that \(q^{\lambda+1} \mid \omega \). \(\square \)

We will also need the easily established technical lemma below.

Lemma 31. If \(x \geq 5 \), then

\[
(x^2 + x + 1)^2 < 2(x^4 - x^2 + 1).
\]
Theorem 32. Let N be a positive integer such that $\gcd(N, 6) = 1$ and put $\eta = 1$ or -1. Let $T = N^2 + \eta N + 1$ and suppose that $T' \mid T$, where $\gcd(T', T/T') = 1$ and $T'^2 > 2T$. If $N \mid DT$ and $N \mid U_T/U_{T'/q}$ for all distinct primes q such that $q \mid T'$, then N is a prime.

Proof. Let p be any prime divisor of N and q be any prime divisor of T'; then $p \geq 5$ and by Lemma 30 we have $q^\lambda \mid \omega(p)$, where $\omega(p)$ is the rank of apparition of p in $\{D_n\}$ and $q^\lambda \parallel T$. Since $\gcd(T', T/T') = 1$, we have $q^\lambda \parallel T'$; hence, $T' \mid \omega(p)$. Let ω denote the rank of apparition of T in $\{D_n\}$. We have $\omega \mid T$ and $\omega/q \not\mid T$; hence, $q^\lambda \mid \omega$, where $q^\lambda \parallel T$ and therefore $T' \mid \omega$.

By (17), we have

$$\omega = \text{lcm}(\omega(p_{i^\alpha_i}) : i = 1, 2, \ldots, j),$$

where

$$N = j \prod_{i=1}^{j} p_{i^\alpha_i}$$

is the prime power factorization of N. Since $\omega(p_{i^\alpha_i}) = p_{i^\nu_i}^{\omega(p_i)}$, we must have $\nu_i = 1$ because $p_i \nmid T$. We get

$$\omega = \text{lcm}(\omega(p_i) : i = 1, 2, \ldots, j) T' \prod_{i=1}^{j} \frac{\omega(p_i)}{T'}.$$

If we put $T = k\omega$, then

$$T \leq kT' \prod_{i=1}^{j} \frac{\omega(p_i)}{T'} \leq kT' \prod_{i=1}^{j} \frac{p_{i^2} + p_i + 1}{T'}$$

by Theorem 13. Also, since

$$T = N^2 + \eta N + 1 > 2 \prod_{i=1}^{j} \frac{p_{i^2} + p_i + 1}{2},$$

([3, Lemma 9.11], cf. [2, Lemma 7.1]) we get

$$kT' \prod_{i=1}^{j} \frac{p_{i^2} + p_i + 1}{T'} > 2 \prod_{i=1}^{j} \frac{p_{i^2} + p_i + 1}{2}$$

and

$$kT'^{2^j} > 2(T')^j.$$

Hence,

$$k > (T'/2)^{j-1} \geq T'/2 \quad \text{(when } j \geq 2).$$

But since $T/T' = k\omega/T'$, we have $k \leq T/T' < T'/2$, a contradiction; consequently, we can only have $j = 1$ and $N = p^\alpha$. Since $\omega(N) = p^{\nu} \omega(p)$ and $\gcd(p, \omega(N)) = 1$, we get $\omega(p^\alpha) = \omega(p)$. It follows that

$$\omega(N) = \omega(p) \leq p^2 + p + 1.$$
Now $T' | \omega(p)$ means that $\omega(p) \geq T'$ and $p^2 + p + 1 \geq T'$. Since $T'^2 > 2T$, we have for $\alpha \geq 2$

$$(p^2 + p + 1)^2 > 2(p^{2\alpha} + \eta p^\alpha + 1) \geq 2(p^{2\alpha} - p^\alpha + 1) \geq 2(p^4 - p^2 + 1)$$

which is impossible by Lemma 31. Hence we can only have $N = p$. □

Many other primality tests can be devised by making use of the ideas in [2, Chapter 7], but the above should suffice to illustrate the kind of results that can be established.

7 Conclusions

In [3] we showed that the $\{U_n\}$ and $\{W_n\}$ sequences can be considered respectively as the sextic analogues of Lucas’ $\{u_n\}$ and $\{v_n\}$ sequences. In this paper we have produced a number of results that are the number-theoretic analogues of well-known properties of the Lucas functions. Of course, there are many other properties of $\{D_n\}$ and $\{E_n\}$ that are similar to those of the $\{D_n\}$ and $\{E_n\}$ sequences discussed at some length in [2], and these can be proved by using the results presented here and the techniques of [2].

References

2010 *Mathematics Subject Classification*: Primary 11B37; Secondary 11Y11, 11B50.
Keywords: linear recurrence, Lucas function, primality testing.

Received February 5 2015; revised version received May 11 2015; May 29 2015. Published in *Journal of Integer Sequences*, May 30 2015.

Return to *Journal of Integer Sequences* home page.