On a Conjecture on the Representation of Positive Integers as the Sum of Three Terms of the Sequence $\left\lfloor \frac{n^2}{a} \right\rfloor$

Sebastian Tim Holdum
Niels Bohr Institute
University of Copenhagen
Denmark
sebastian.holdum@nbi.dk

Frederik Ravn Klausen and Peter Michael Reichstein Rasmussen
Department of Mathematics
University of Copenhagen
Denmark
tlk870@alumni.ku.dk
nmq584@alumni.ku.dk

Abstract

We prove some cases of a conjecture by Farhi on the representation of every positive integer as the sum of three terms of the sequence $\left\lfloor \frac{n^2}{a} \right\rfloor$. This is done by generalizing a method used by Farhi in his original paper.

1 Introduction

In the following we let \mathbb{N} denote the set of non-negative integers, $\lfloor \cdot \rfloor$ denote the greatest integer function, and $\langle \cdot \rangle$ denote the fractional part function.
A classical result by Legendre [3] states that every natural number not of the form $4^s(8t + 7), s, t \in \mathbb{N}$ can be written as the sum of three squares.

In relation to this, Farhi recently conjectured the following:

Conjecture 1 (Farhi [2]). Let $a \geq 3$ be an integer. Then every natural number can be represented as the sum of three terms of the sequence $\left(\left\lfloor \frac{n^2}{a} \right\rfloor \right)_{n \in \mathbb{N}}$.

The conjecture was confirmed by Farhi [1] and Mezroui, Azizi, and Ziane [4] for $a \in \{3, 4, 8\}$.

In this paper we generalize the method used by Farhi for $a = 4$, and partially for $a = 3$, to prove that the conjecture holds for $a \in \{4, 7, 8, 9, 20, 24, 40, 104, 120\}$. The method uses Legendre’s three-square theorem and properties of quadratic residues.

We also note that the set of integers a such that Conjecture 1 holds is closed under multiplication by a square.

2 Method and results

We start by introducing the following sets:

Definition 2. For any nonzero $a \in \mathbb{N}$ we define

$$Q_a = \{0 < \varphi < a \mid \exists x \in \mathbb{Z}: \varphi \equiv x^2 \pmod{a}\}.$$

Therefore, Q_a is the set of quadratic residues modulo a.

Definition 3. For any nonzero $a \in \mathbb{N}$ we define

$$A_a = \{\varphi \in \mathbb{N} \mid \exists x, y, z \in Q_a \cup \{0\}: \varphi = x + y + z\}.$$

Thus, A_a is the set of integers that can be written as the sum of three elements of $Q_a \cup \{0\}$.

Definition 4. For any nonzero $a \in \mathbb{N}$ we define

$$R_a = \{\varphi \in A_a \mid \forall \psi \in A_a: \varphi \equiv \psi \pmod{a} \Rightarrow \varphi = \psi\}.$$

So, R_a is the set of integers that can be written as the sum of three elements of $Q_a \cup \{0\}$, and such that no other integer in the same residue class modulo a has this property.

Now we are ready to formulate the main result.

Theorem 5. Let $a \in \mathbb{N}$ be nonzero and assume that for every $k \in \mathbb{N}$ there exists an $r \in R_a$ such that $ak + r \neq 4^s(8t + 7)$ for any $s, t \in \mathbb{N}$. Then every $N \in \mathbb{N}$ can be written as the sum of three terms of the sequence $\left(\left\lfloor \frac{n^2}{a} \right\rfloor \right)_{n \in \mathbb{N}}$.

2
Proof. Let $N \in \mathbb{N}$ be fixed. By assumption we can choose $r \in \mathcal{R}_a$ such that $aN + r \neq 4^s(8t + 7)$ for any $s, t \in \mathbb{N}$. By Legendre’s theorem it follows that $aN + r$ can be written of the form

$$aN + r = A^2 + B^2 + C^2$$

for some $A, B, C \in \mathbb{N}$. Now we have

$$r \equiv A^2 + B^2 + C^2 \pmod{a},$$

so

$$r = (A^2 \mod{a}) + (B^2 \mod{a}) + (C^2 \mod{a}),$$

since $r \in \mathcal{R}_a$. Dividing by a and separating the integer and fractional parts of the right hand side in (1), we get

$$N + \frac{r}{a} = \left\lfloor \frac{A^2}{a} \right\rfloor + \left\lfloor \frac{B^2}{a} \right\rfloor + \left\lfloor \frac{C^2}{a} \right\rfloor + \left\langle \frac{A^2}{a} \right\rangle + \left\langle \frac{B^2}{a} \right\rangle + \left\langle \frac{C^2}{a} \right\rangle,$$

and from (2) we have

$$\frac{r}{a} = \left\langle \frac{A^2}{a} \right\rangle + \left\langle \frac{B^2}{a} \right\rangle + \left\langle \frac{C^2}{a} \right\rangle,$$

so

$$N = \left\lfloor \frac{A^2}{a} \right\rfloor + \left\lfloor \frac{B^2}{a} \right\rfloor + \left\lfloor \frac{C^2}{a} \right\rfloor.$$

Since we can find the sets \mathcal{R}_a by computation, we can now apply the main theorem to get the following corollary.

Corollary 6. *Conjecture 1 is satisfied for $a \in \{4, 7, 8, 9, 20, 24, 40, 104, 120\}.*

Proof. Consider the following table:

<table>
<thead>
<tr>
<th>a</th>
<th>\mathcal{R}_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>{0, 1, 2, 3}</td>
</tr>
<tr>
<td>7</td>
<td>{4, 6}</td>
</tr>
<tr>
<td>8</td>
<td>{2, 3, 5, 6}</td>
</tr>
<tr>
<td>9</td>
<td>{1, 4, 7, 8}</td>
</tr>
<tr>
<td>20</td>
<td>{11, 15, 18, 19}</td>
</tr>
<tr>
<td>24</td>
<td>{11, 14, 19, 21, 22}</td>
</tr>
<tr>
<td>40</td>
<td>{27, 38}</td>
</tr>
<tr>
<td>104</td>
<td>{99}</td>
</tr>
<tr>
<td>120</td>
<td>{107}</td>
</tr>
</tbody>
</table>
Calculating modulo 8 it can be checked fairly easily that for each \(a \in \{4, 7, 8, 9, 20, 24, 40, 104, 120\} \) and every \(k \in \mathbb{N} \) there exists an \(r \in \mathcal{R}_a \) such that \(ak + r \) is not of the form \(4^s(8t + 7), s, t \in \mathbb{N} \), and thus every natural number can be written as the sum of three terms of the sequence \(\left\lfloor \frac{n^2}{a} \right\rfloor \) \(n \in \mathbb{N} \).

To demonstrate this, we show the case \(a = 7 \). All the other cases are done in exactly the same way.

For \(k \equiv 1, 2, 3, 6 \) or 7 (mod 8) we have \(7k + 4 \equiv 3, 2, 1, 6 \) and 5 (mod 8), respectively, and for \(k \equiv 0, 4 \) or 5 (mod 8) we have \(7k + 6 \equiv 6, 2 \) and 1 (mod 8), respectively. Since \(4^s(8t + 7) \equiv 0, 4 \) or 7 (mod 8), \(s, t \in \mathbb{N} \), we conclude that for every \(k \in \mathbb{N} \) we can write \(7k + r \), for \(r \in \mathcal{R}_7 = \{4, 6\} \), such that it is not of the form \(4^s(8t + 7), s, t \in \mathbb{N} \). The case now follows from Theorem 5. \(\square \)

Further, one should note that the set of integers satisfying Conjecture 1 is closed under multiplication by a square.

Observation 7. Let \(\mathcal{M} \) be the set of integers satisfying Conjecture 1. If \(a \in \mathcal{M} \), then \(ak^2 \in \mathcal{M} \) for any integer \(k > 0 \).

Proof. This follows easily since for any \(n \) we can find \(A, B, C \in \mathbb{N} \) such that

\[
n = \left\lfloor \frac{A^2}{a} \right\rfloor + \left\lfloor \frac{B^2}{a} \right\rfloor + \left\lfloor \frac{C^2}{a} \right\rfloor = \left\lfloor \frac{(Ak)^2}{ak^2} \right\rfloor + \left\lfloor \frac{(Bk)^2}{ak^2} \right\rfloor + \left\lfloor \frac{(Ck)^2}{ak^2} \right\rfloor.
\]

Knowing this, we see that since Conjecture 1 is satisfied for \(a = 3, 9, 4, \) and 8, it must also hold for \(a = 3^k \) for any positive integer \(k \) and for \(a = 2^k, k > 1 \).

Finally, using Observation 7, Corollary 6, and the fact [4] that Conjecture 1 holds for \(a = 3 \), we get that the conjecture holds for the following values up to 120.

\[
a \in \{3, 4, 7, 8, 9, 12, 16, 20, 24, 27, 28, 32, 36, 40, 48, 63, 64, 72, 75, 80, 81, 96, 100, 104, 108, 112, 120\}.
\]

Unfortunately, it seems that the method deployed in Theorem 5 is not extendable to other cases, since its success relies on \(\mathcal{R}_a \), and in general \(\mathcal{R}_a \) does not contain the necessary elements for the condition in the theorem to be satisfied.

3 Acknowledgment

The authors would like to thank Jan Agentoft Nielsen for his suggestions that helped to improve the manuscript.
References

[1] B. Farhi, On the representation of the natural numbers as the sum of three terms of the sequence $\left\lfloor \frac{n^2}{a} \right\rfloor$, *J. Integer Seq.*, 16 (2013), Article 13.6.4.

[2] B. Farhi, An elementary proof that any natural number can be written as the sum of three terms of the sequence $\left\lfloor \frac{n^2}{3} \right\rfloor$, *J. Integer Seq.*, 17 (2014), Article 14.7.6.

2010 Mathematics Subject Classification: Primary 11B13.

Keywords: additive base, Legendre’s theorem.

Received September 29 2014; revised version received March 5 2015; May 19 2015. Published in *Journal of Integer Sequences*, May 31 2015.

Return to *Journal of Integer Sequences* home page.