Constructing Exponential Riordan Arrays from Their A and Z Sequences

Paul Barry
School of Science
Waterford Institute of Technology
Ireland
pbarry@wit.ie

Abstract

We show how to construct an exponential Riordan array from a knowledge of its A and Z sequences. The effect of pre- and post-multiplication by the binomial matrix on the A and Z sequences is examined, as well as the effect of scaling the A and Z sequences. Examples are given, including a discussion of related Sheffer orthogonal polynomials.

1 Introduction

One of the most fundamental results concerning Riordan arrays is that they have a sequence characterization [13, 18]. This normally involves two sequences, called the A-sequence and the Z-sequence. For exponential Riordan arrays [9] (see Appendix), this characterization is equivalent to the fact that the production matrix [11] of an exponential array $[g, f]$, with A-sequence $A(t)$ and Z-sequence $Z(t)$ has bivariate generating function

$$e^{zt}(Z(t) + A(t)z).$$

In this case we have

$$A(t) = f'(\tilde{f}(t)), \quad Z(t) = \frac{g'(\tilde{f}(t))}{g(\tilde{f}(t))}.$$

Examples of exponential Riordan arrays and their production matrices may be found in the On-Line Encyclopedia of Integer Sequences [19, 20]. In that database, sequences are referred to by their A-numbers. For known sequences, we shall adopt this convention in this note.
A natural question to ask is the following. If we are given two suitable power series \(A(t) \) and \(Z(t) \), can we recover the corresponding exponential Riordan array \([g(t), f(t)]\) whose \(A \) and \(Z \) sequences correspond to the given power series \(A(t) \) and \(Z(t) \)?

The next two simple results provide a means of doing this.

Lemma 1. For an exponential Riordan array \([g(t), f(t)]\) with \(A \)-sequence \(A(t) \), we have

\[
\frac{d}{dt} \bar{f}(t) = \frac{1}{A(t)}.
\]

Proof. By definition of the compositional inverse, we have

\[
f(\bar{f}(t)) = t.
\]

Differentiating this with respect to \(t \), we obtain

\[
f'(\bar{f}(t)) \frac{d}{dt} \bar{f}(t) = 1
\]

or

\[
\frac{d}{dt} \bar{f}(t) = \frac{1}{f'(\bar{f}(t))} = \frac{1}{A(t)}.
\]

\(\square\)

Lemma 2. For an exponential Riordan array \([g(t), f(t)]\) with \(A \)-sequence \(A(t) \) and \(Z \)-sequence \(Z(t) \), we have

\[
\frac{d}{dt} \ln(g(\bar{f}(t))) = \frac{Z(t)}{A(t)}.
\]

Proof. We have

\[
\frac{d}{dt} \ln(g(\bar{f}(t))) = \frac{g'(\bar{f}(t))}{g(\bar{f}(t))} \frac{d}{dt} \bar{f}(t) = Z(t) \frac{1}{A(t)} = \frac{Z(t)}{A(t)}.
\]

\(\square\)

Thus if we can easily carry out the reversion from \(\bar{f}(t) \) to \(f(t) \), a knowledge of \(A(t) \) and \(Z(t) \), along with the equations

\[
\frac{d}{dt} \bar{f}(t) = \frac{1}{A(t)}, \quad \frac{d}{dt} \ln(g(\bar{f}(t))) = \frac{Z(t)}{A(t)}
\]

will allow us to find \(f(t) \) and \(g(t) \). The steps to achieve this are as follows.

- Using the equation \(\frac{d}{dt} \bar{f}(t) = \frac{1}{A(t)} \), solve for \(\bar{f}(t) \).
- Revert \(\bar{f}(t) \) to get \(f(t) \).
Solve the equation \(\frac{d}{dt} \ln(g(\bar{f}(t))) = \frac{Z(t)}{A(t)} \) and take the exponential to get \(g(\bar{f}(t)) \).

Solve for \(g(t) \) by substituting \(f(t) \) in place of \(t \) in the last found expression.

Constants of integration may be determined using such conditions as \(\bar{f}(0) = f(0) = 0 \), and \(g(0) = 1 \).

Example 3. We seek to find \([g(t), f(t)]\) where

\[
A(t) = \frac{1}{1 + t}, \quad Z(t) = -\frac{1}{1 + t}.
\]

We start by solving the equation

\[
\frac{d}{dt} \bar{f}(t) = 1 + t.
\]

Since \(\bar{f}(0) = 0 \), we find that

\[
\bar{f}(t) = t + \frac{t^2}{2} = t \left(1 + \frac{t}{2}\right).
\]

We revert this to get

\[
f(t) = \sqrt{1 + 2t} - 1.
\]

We now solve the equation

\[
\frac{d}{dt} \ln(g(\bar{f}(t))) = \frac{Z(t)}{A(t)} = -1.
\]

Thus we find that

\[
\ln(g(\bar{f}(t))) = -t \Rightarrow g(\bar{f}(t)) = e^{-t}.
\]

Thus (since \(\bar{f}(f(t)) = t \)) we get

\[
g(t) = e^{-f(t)} = e^{1 - \sqrt{1 + 2t}}.
\]

Hence the exponential Riordan array with the given \(A \) and \(Z \) sequences is

\[
[g, f] = \left[e^{1 - \sqrt{1 + 2t}}, \sqrt{1 + 2t} - 1\right].
\]

We note that

\[
[g, f]^{-1} = \left[e^t, t + \frac{t^2}{2}\right]
\]

which is the Pascal-like matrix \([6].\)

In like manner, we can show that

\[
A(t) = \frac{1}{1 + 2t}, \quad Z(t) = -\frac{1}{1 + 2t}
\]
corresponds to the exponential Riordan array
\[\left[g, f \right] = \left[e^{\frac{1-\sqrt{1+4t}}{2}}, \frac{\sqrt{1+4t} - 1}{2} \right], \]
whose inverse
\[\left[g, f \right]^{-1} = \left[e^t, t + t^2 \right] \]
is Pascal-like [6]. In general, if \(A(t) = -Z(t) = \frac{1}{1+rt} \), then
\[\left[g, f \right] = \left[e^{\frac{1}{r}(1-\sqrt{1+2rt})}, \frac{1}{r}(\sqrt{1+2rt} - 1) \right]. \]
Then
\[\left[g, f \right]^{-1} = \left[e^t, t + \frac{t^2}{2} \right] \]
is a Pascal-type matrix.

2 Effect of the binomial transform

The next proposition shows the effect of changing \(Z(t) \) to \(Z(t) + 1 \) and to \(Z(t) + A(t) \), respectively. We recall that the binomial matrix \(B = [e^t, t] \).

Proposition 4. Let \([g, f] \) be an exponential Riordan array with \(A \) and \(Z \) sequences \(A(t) \) and \(Z(t) \) respectively. Then the exponential Riordan array \(B \cdot [g, f] \) has \(A \) and \(Z \) sequences \(A(t) \) and \(Z(t) + 1 \) respectively, while the exponential Riordan array \([g, f] \cdot B \) has \(A \) and \(Z \) sequences \(A(t) \) and \(Z(t) + A(t) \) respectively.

Proof. Firstly, we let the exponential Riordan array \([h, l] \) have \(A \) and \(Z \) sequences \(A(t) \) and \(Z(t) + 1 \) respectively. Then we have \(\frac{d}{dt} \bar{l}(t) = \frac{1}{A(t)} \), which implies that \(l(t) = f(t) \) (since \(l(0) = f(0) = 0 \)). Now
\[\frac{d}{dt} \ln(h(\bar{l}(t))) = \frac{d}{dt} \ln(h(\bar{f}(t))) = \frac{Z(t) + 1}{A(t)} = \frac{Z(t)}{A(t)} + \frac{1}{A(t)}. \]
Thus
\[\ln(h(\bar{f}(t))) = \ln(g(\bar{f}(t))) + \bar{f}(t) \Rightarrow h(\bar{f}(t)) = g(\bar{f}(t))e^{\bar{f}(t)}. \]
We obtain that
\[h(t) = g(t)l^t \]
and so
\[[h(t), l(t)] = [e^t g(t), f(t)] = [e^t, t] \cdot [g(t), f(t)] = B \cdot [g(t), f(t)]. \]
Secondly, we now assume that the exponential Riordan array \([h, l] \) have A and Z sequences \(A(t)\) and \(Z(t) + A(t)\) respectively. As before, we see that \(l(t) = f(t)\). Also,

\[
\frac{d}{dt} \ln(h(l(t))) = \frac{d}{dt} \ln(h(\bar{f}(t))) = \frac{Z(t) + A(t)}{A(t)} = \frac{Z(t)}{A(t)} + 1.
\]

Thus

\[
\ln(h(\bar{f}(t))) = \ln(g(\bar{f}(t))) + t \Rightarrow h(\bar{f}(t)) = g(\bar{f}(t))e^t.
\]

Now substituting \(f(t)\) for \(t\) gives us

\[
h(t) = e^{f(t)}g(t).
\]

Thus

\[
[h, l] = [e^{f(t)}g(t), f(t)] = [g(t), f(t)] \cdot [e^t, t] = [g(t), f(t)] \cdot B.
\]

We shall see examples of these results in the next section.

\[\square\]

3 Effect of Scaling

In this section, we will assume that the exponential Riordan array with A and Z sequences \(A(t)\) and \(Z(t)\), respectively, is given by \([g(t), f(t)]\). We wish to characterize the exponential Riordan array \([g^*(t), f^*(t)]\) whose A and Z sequences are \(A^*(t) = rA(t)\) and \(Z^*(t) = sZ(t)\) respectively.

Proposition 5. We have

\[
[g^*(t), f^*(t)] = [g(rt)^\frac{1}{r}, rf(t)].
\]

Proof. We have

\[
\frac{d}{dt} f^*(t) = \frac{1}{rA} = \frac{1}{r} \frac{d}{dt} \bar{f}(t).
\]

Thus

\[
\bar{f}^*(t) = \frac{1}{r} \bar{f}(t) \Rightarrow f^*(t) = rf(t).
\]

Then

\[
\frac{d}{dt} \ln(g^*(\bar{f}^*(t))) = \frac{sZ}{rA} = \frac{s}{r} \frac{d}{dt} \ln(g(\bar{f}(t))),
\]

and so

\[
\ln(g^*(\bar{f}^*(t))) = \frac{s}{r} \ln(g(\bar{f}(t))) = \ln \left(g(\bar{f}(t))^\frac{s}{r} \right).
\]

Thus

\[
g^*(\bar{f}^*(t)) = g(\bar{f}(t))^\frac{s}{r} \Rightarrow g^*(\frac{1}{r} \bar{f}(t)) = g(\bar{f}(t))^\frac{s}{r} \Rightarrow g^*(\frac{1}{r} t) = g(t)^\frac{s}{r},
\]

or

\[
g^*(t) = g(rt)^\frac{s}{r}.
\]
Example 6. We let
\[A(t) = 1 + t, \quad Z(t) = 1 + 2t. \]
We find that the corresponding exponential array is
\[[g, f] = \left[e^{2e^t - t - 2}, e^t - 1 \right], \]
which begins
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
3 & 3 & 1 & 0 & 0 & 0 & \cdots \\
9 & 13 & 6 & 1 & 0 & 0 & \cdots \\
35 & 59 & 37 & 10 & 1 & 0 & \cdots \\
153 & 301 & 230 & 85 & 15 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\
\end{pmatrix},
\]
with production matrix which begins
\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
2 & 2 & 1 & 0 & 0 & 0 & \cdots \\
0 & 4 & 3 & 1 & 0 & 0 & \cdots \\
0 & 0 & 6 & 4 & 1 & 0 & \cdots \\
0 & 0 & 0 & 8 & 5 & 1 & \cdots \\
0 & 0 & 0 & 0 & 10 & 6 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\
\end{pmatrix}.
\]
We now take
\[A^*(t) = 3(1 + t), \quad Z^*(t) = 5(1 + 2t). \]
The corresponding exponential Riordan array is then given by
\[[g^*(t), f^*(t)] = \left[\left(e^{2e^{3t - 3t - 2}} \right)^{\frac{3}{2}}, 3(e^t - 1) \right]. \]
This array begins
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
5 & 3 & 0 & 0 & 0 & 0 & \cdots \\
55 & 33 & 9 & 0 & 0 & 0 & \cdots \\
665 & 543 & 162 & 27 & 0 & 0 & \cdots \\
9895 & 9033 & 3573 & 702 & 81 & 0 & \cdots \\
165185 & 170103 & 76410 & 19575 & 2835 & 243 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\
\end{pmatrix},
\]
with production matrix which begins

\[
\begin{pmatrix}
5 & 3 & 0 & 0 & 0 & 0 & \ldots \\
10 & 8 & 3 & 0 & 0 & 0 & \ldots \\
0 & 20 & 11 & 3 & 0 & 0 & \ldots \\
0 & 0 & 30 & 14 & 3 & 0 & \ldots \\
0 & 0 & 0 & 40 & 17 & 3 & \ldots \\
0 & 0 & 0 & 0 & 50 & 20 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}.
\]

4 Further examples

Example 7. We take the Stirling number related choice of

\[A(t) = 1 + t, \quad Z(t) = 1 + t. \]

From

\[\frac{d}{dt} \bar{f}(t) = \frac{1}{1 + t}, \]

we obtain

\[\bar{f}(t) = \ln(1 + t) \Rightarrow f(t) = e^t - 1. \]

Then from

\[\frac{d}{dt} \ln(g(\bar{f}(t))) = \frac{Z(t)}{A(t)} = 1 \]

we obtain

\[\ln(g(\bar{f}(t))) = t \Rightarrow g(\bar{f}(t)) = e^t, \]

and hence

\[g(t) = e^{e^t - 1}. \]

Thus we obtain

\[[g, f] = [e^{e^t - 1}, e^t - 1], \]

which is A049020. We have

\[[g, f] = S_2 \cdot B \]
where \(S_2 \) is the matrix of Stirling numbers of the second kind (A048993) and \(B \) is the binomial matrix (A007318). The production array of \([g, f]\) is given by

\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 2 & 1 & 0 & 0 & 0 & \ldots \\
0 & 2 & 3 & 1 & 0 & 0 & \ldots \\
0 & 0 & 3 & 4 & 1 & 0 & \ldots \\
0 & 0 & 0 & 4 & 5 & 1 & \ldots \\
0 & 0 & 0 & 0 & 5 & 6 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}.
\]

Since this production matrix is tri-diagonal, the inverse matrix \([g, f]^{-1}\) is the coefficient array of a family of orthogonal polynomials [4, 3]. The family in question is the family of Charlier polynomials, which has the Bell numbers (with e.g.f. \(e^{e^t-1} \)) as moments. The Charlier polynomials satisfy the three-term recurrence

\[
P_n(t) = (t - n)P_{n-1}(t) - (n - 1)P_{n-2}(t),
\]

with \(P_0(t) = 1, \ P_1(t) = t - 1. \)

Example 8. We take

\[
A(t) = 1 + t \quad Z(t) = 1 + t + t^2.
\]

Again, we find that

\[
f(t) = e^t - 1.
\]

Then

\[
\frac{d}{dt} \ln(g(\bar{f}(t))) = \frac{Z(t)}{A(t)} = \frac{1 + t + t^2}{1 + t},
\]

and hence

\[
\ln(g(\bar{f}(t))) = \frac{t^2}{2} + \ln(1 + t).
\]

Thus

\[
g(\bar{f}(t)) = e^{\frac{t^2}{2}}(1 + t),
\]

and so

\[
g(t) = e^{\frac{(e^t - 1)^2}{2}}(1 + e^t - 1) = e^t e^{\frac{(e^t - 1)^2}{2}}.
\]

In this case, the production matrix is four-diagonal and begins

\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 2 & 1 & 0 & 0 & 0 & \ldots \\
2 & 2 & 3 & 1 & 0 & 0 & \ldots \\
0 & 6 & 3 & 4 & 1 & 0 & \ldots \\
0 & 0 & 12 & 4 & 5 & 1 & \ldots \\
0 & 0 & 0 & 20 & 5 & 6 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}.
\]
The exponential Riordan array

\[[g, f] = \left[e^{t \frac{(e^t - 1)^2}{2}}, e^t - 1 \right] \]

begins

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
2 & 3 & 1 & 0 & 0 & 0 & \cdots \\
7 & 10 & 6 & 1 & 0 & 0 & \cdots \\
29 & 45 & 31 & 10 & 1 & 0 & \cdots \\
136 & 241 & 180 & 75 & 15 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

The row sums of this array are the Dowling numbers A007405.

We note that the exponential Riordan array

\[B^{-1} \cdot [g, f] = [e^{-t}, t] \cdot [g, f] = \left[e^{t \frac{(e^t - 1)^2}{2}}, e^t - 1 \right] \]

has

\[A(t) = 1 + t \quad Z(t) = t + t^2. \]

This array begins

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 1 & 0 & 0 & 0 & \cdots \\
3 & 4 & 3 & 1 & 0 & 0 & \cdots \\
10 & 19 & 13 & 6 & 1 & 0 & \cdots \\
45 & 91 & 75 & 35 & 10 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

The first column of this array is A060311, while its row sums are given by A004211. The production matrix of this array begins

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 1 & 0 & 0 & 0 & \cdots \\
2 & 2 & 2 & 1 & 0 & 0 & \cdots \\
0 & 6 & 3 & 3 & 1 & 0 & \cdots \\
0 & 0 & 12 & 4 & 4 & 1 & \cdots \\
0 & 0 & 0 & 20 & 5 & 5 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

where we see that the effect of the inverse binomial matrix is to subtract 1 from the diagonal.
In this example, we have $Z(t) = 1 + t + t^2 = A(t) + t^2$. Thus the exponential Riordan array $[g, f]$ is equal to the product $[h, l] \cdot B$ where the exponential Riordan array $[h, l]$ has A and Z sequences of $1+t$ and t^2, respectively.

Example 9. We take

$$A(t) = 1 + t^2, \quad Z(t) = 1 + t + t^2.$$

Then Thus

$$f(t) = \tan(t).$$

Now

$$\frac{d}{dt} \ln(g(\tilde{f}(t))) = \frac{Z(t)}{A(t)} = \frac{1 + t + t^2}{1 + t^2} = \frac{1}{1 + t^2},$$

and so

$$\ln(g(\tilde{f}(t))) = \ln\sqrt{1 + t^2} + t.$$

Thus

$$g(\tilde{f}(t)) = e^t\sqrt{1 + t^2} \Rightarrow g(t) = e^{\tan(t)}\sqrt{1 + \tan^2(t)} = \frac{e^{\tan(t)}}{\cos(t)}.$$

Thus the sought-for exponential Riordan array is given by

$$[g, f] = [e^{\tan(t)} \sec(t), \tan(t)].$$

This matrix begins

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
2 & 2 & 1 & 0 & 0 & 0 & \cdots \\
6 & 8 & 3 & 1 & 0 & 0 & \cdots \\
20 & 32 & 20 & 4 & 1 & 0 & \cdots \\
92 & 156 & 100 & 40 & 5 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix},$$

with production matrix that begins

$$\begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 1 & 0 & 0 & 0 & \cdots \\
2 & 4 & 1 & 1 & 0 & 0 & \cdots \\
0 & 6 & 9 & 1 & 1 & 0 & \cdots \\
0 & 0 & 12 & 16 & 1 & 1 & \cdots \\
0 & 0 & 0 & 20 & 25 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix},$$

10
The first column is A009244. We note that we have the following factorization
\[[g, f] = [e^{\tan(t)} \sec(t), \tan(t)] = [\sec(t), \tan(t)] \cdot B. \]

Thus we can say that the exponential Riordan array \([\sec(t), \tan(t)]\), which begins
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 0 & \cdots \\
1 & 0 & 1 & 0 & 0 & \cdots \\
0 & 5 & 0 & 1 & 0 & \cdots \\
5 & 0 & 14 & 0 & 1 & \cdots \\
0 & 61 & 0 & 30 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots
\end{pmatrix},
\]

has A sequence defined by \(1 + t^2\) and Z sequence defined by \(t\). Thus its production matrix is given by
\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & \cdots \\
1 & 0 & 1 & 0 & 0 & \cdots \\
0 & 4 & 0 & 1 & 0 & \cdots \\
0 & 0 & 9 & 0 & 1 & \cdots \\
0 & 0 & 0 & 16 & 0 & 1 & \cdots \\
0 & 0 & 0 & 0 & 25 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots
\end{pmatrix},
\]

We can infer from this that the inverse array
\[
[\sec(t), \tan(t)]^{-1} = \left[\frac{1}{\sqrt{1 + t^2}}, \tan^{-1}(t) \right]
\]
is the coefficient array of the family of orthogonal polynomials
\[
P_n(t) = tP_{n-1}(t) - (n - 1)^2 P_{n-2}(t),
\]
with \(P_0(t) = 1\) and \(P_1(t) = t\).

Example 10. In this example, we let
\[
A(t) = 1 + t, \quad Z(t) = \frac{1}{1 - t}.
\]

As before, we get \(f(t) = e^t - 1\). Now
\[
\frac{d}{dt} \ln(g(\bar{f}(t))) = \frac{Z(t)}{A(t)} = \frac{1}{1 - t^2},
\]

11
and hence
\[\ln(g(\bar{f}(t))) = \frac{1}{2} \ln \left(\frac{1+t}{1-t} \right). \]

We infer that
\[g(t) = \sqrt{\frac{e^t}{2 - e^t}}. \]

The function \(g(t) \) generates the sequence \texttt{A014307} which begins
\[1, 1, 2, 7, 35, 226, 1787, 16717, 180560, 2211181, 30273047, \ldots. \]

It has many combinatorial interpretations [7, 15, 17].

The exponential Riordan array
\[[g, f] = \left[\sqrt{\frac{e^t}{2 - e^t}}, e^t - 1 \right] \]

begins
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
2 & 3 & 1 & 0 & 0 & 0 & \cdots \\
7 & 10 & 6 & 1 & 0 & 0 & \cdots \\
35 & 45 & 31 & 10 & 1 & 0 & \cdots \\
226 & 271 & 180 & 75 & 15 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\
\end{pmatrix},
\]

with production matrix that begins
\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 2 & 1 & 0 & 0 & 0 & \cdots \\
2 & 2 & 3 & 1 & 0 & 0 & \cdots \\
6 & 6 & 3 & 4 & 1 & 0 & \cdots \\
24 & 24 & 12 & 4 & 5 & 1 & \cdots \\
120 & 120 & 60 & 20 & 5 & 6 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\
\end{pmatrix},
\]

In general, the exponential Riordan array with
\[A(t) = 1 + t, \quad Z(t) = \frac{r}{1 - t}, \]

is given by
\[[g, f] = \left[\left(\frac{e^t}{2 - e^t} \right)^{r/2}, e^t - 1 \right]. \]
Example 11. For this example, we take

\[A(t) = e^{-t}, \quad Z(t) = e^t. \]

Then

\[\frac{d}{dt} \bar{f}(t) = \frac{1}{A(t)} = \frac{1}{e^{-t}} = e^t, \]

and so we get

\[\bar{f}(t) = e^t + C = e^t - 1 \]

since \(\bar{f}(0) = 0 \). Thus

\[f(t) = \ln(1 + t). \]

Now

\[\frac{d}{dt} \ln(g(\bar{f}(t))) = \frac{Z(t)}{A(t)} = \frac{e^t}{e^{-t}} = e^{2t}, \]

and so

\[\ln(g(\bar{f}(t))) = \frac{e^{2t}}{2} - \frac{1}{2} \Rightarrow g(\bar{f}(t)) = e^{\frac{1}{2}(e^{2t} - 1)}. \]

Substituting \(f(t) \) for \(t \) we get

\[g(t) = e^{\frac{1}{2}(e^{2\ln(1+t)} - 1)} = e^{t + \frac{t^2}{2}}. \]

Thus

\[[g, f] = \left[e^{t + \frac{t^2}{2}}, \ln(1 + t) \right]. \]

We note that if we have

\[A(t) = Z(t) = e^{-t}, \]

then we obtain

\[[g, f] = [1 + t, \ln(1 + t)]. \]

Interestingly, this last exponential Riordan array has a production matrix that is equal the ordinary Riordan array

\[
\begin{pmatrix}
\frac{1+2t}{1+t} & t \\
\frac{t}{1+t} &
\end{pmatrix}
\]

with its first row removed.
5 Orthogonal polynomials

When \(Z(t) = \alpha + \beta t \) and \(A(t) = 1 + \gamma t + \delta t^2 \), the production matrix of the corresponding exponential Riordan array \([g, f]\) is tri-diagonal, beginning as follows.

\[
\begin{pmatrix}
\alpha & 1 & 0 & 0 & 0 & 0 & \ldots \\
\beta & \alpha + \gamma & 1 & 0 & 0 & 0 & \ldots \\
0 & 2(\beta + \delta) & \alpha + 2\gamma & 1 & 0 & 0 & \ldots \\
0 & 0 & 3(\beta + 2\delta) & \alpha + 3\gamma & 1 & 0 & \ldots \\
0 & 0 & 0 & 4(\beta + 3\delta) & \alpha + 4\gamma & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

As a consequence, \([g, f]^{-1}\) is the coefficient array of the family of orthogonal polynomials \(P_n(t) \) defined by the three-term recurrence \([8, 12, 21]\)

\[P_n(t) = (t - (\alpha + (n - 1)\gamma))P_{n-1}(t) - (n - 1)(\beta + (n - 2)\delta)P_{n-2}(t),\]

with \(P_0(t) = 1 \) and \(P_1(t) = x - \alpha \). These are precisely the Sheffer orthogonal polynomials \([1, 13]\).

Example 12. We take the case of

\[A(t) = 1 + t + t^2, \quad Z(t) = 1 + t.\]

We have

\[
\frac{d}{dt}\tilde{f}(t) = \frac{1}{1 + t + t^2}.
\]

Choosing the constant of integration so that \(\tilde{f}(0) = 0 \), we get

\[
\tilde{f}(t) = \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2t + 1}{\sqrt{3}} \right) - \frac{\pi}{3\sqrt{3}}.
\]

Thus

\[
f(t) = \frac{\sqrt{3}}{2} \tan \left(\frac{\sqrt{3}t}{2} + \frac{\pi}{6} \right) - \frac{1}{2}
\]

\[
= \frac{2 \sin \left(\frac{\sqrt{3}t}{2} \right)}{\sqrt{3} \cos \left(\frac{\sqrt{3}t}{2} \right) - \sin \left(\frac{\sqrt{3}t}{2} \right)}
\]

\[
= \frac{2 \tan \left(\frac{\sqrt{3}t}{2} \right)}{\sqrt{3} - \tan \left(\frac{\sqrt{3}t}{2} \right)}.
\]
We now have
\[
\frac{d}{dt} \ln(g(\bar{f}(t))) = \frac{Z(t)}{A(t)} = \frac{1 + t}{1 + t + t^2},
\]
and hence
\[
\ln(g(\bar{f}(t))) = \frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{2t + 1}{\sqrt{3}}\right) + \frac{1}{2} \ln(1 + t + t^2) - \frac{\pi}{6\sqrt{3}}.
\]
From this we infer that
\[
g(t) = \frac{\sqrt{3}e^{\frac{\sqrt{3}t}{2}}}{\sqrt{3} \cos\left(\frac{\sqrt{3}t}{2}\right) - \sin\left(\frac{\sqrt{3}t}{2}\right)}.
\]
The function \(g(t)\) generates the sequence \(A049774\), which counts the number of permutations of \(n\) elements not containing the consecutive pattern 123.

The sought-for matrix is thus
\[
[g, f] = \begin{bmatrix}
\frac{\sqrt{3}e^{\frac{\sqrt{3}t}{2}}}{\sqrt{3} \cos\left(\frac{\sqrt{3}t}{2}\right) - \sin\left(\frac{\sqrt{3}t}{2}\right)}, & 2\sin\left(\frac{\sqrt{3}t}{2}\right) \\
\sqrt{3} \cos\left(\frac{\sqrt{3}t}{2}\right) - \sin\left(\frac{\sqrt{3}t}{2}\right), & \sqrt{3} \cos\left(\frac{\sqrt{3}t}{2}\right) - \sin\left(\frac{\sqrt{3}t}{2}\right)
\end{bmatrix}.
\]
This exponential Riordan array is \(A182822\), which begins
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
2 & 3 & 1 & 0 & 0 & 0 & \cdots \\
5 & 12 & 6 & 1 & 0 & 0 & \cdots \\
17 & 53 & 39 & 10 & 1 & 0 & \cdots \\
70 & 279 & 260 & 95 & 15 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix},
\]
with production matrix that begins
\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 2 & 1 & 0 & 0 & 0 & \cdots \\
0 & 4 & 3 & 1 & 0 & 0 & \cdots \\
0 & 0 & 9 & 4 & 1 & 0 & \cdots \\
0 & 0 & 0 & 16 & 5 & 1 & \cdots \\
0 & 0 & 0 & 0 & 25 & 6 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}.
\]

Example 13. We change the previous example slightly by taking
\[
A(t) = 1 + 2t + t^2 = (1 + t)^2, \quad Z(t) = 1 + t.
\]
Then we have
\[
\frac{d}{dt} \bar{f}(t) = \frac{1}{(1+t)^2} \Rightarrow \bar{f}(t) = -\frac{1}{1+t} + 1 = \frac{t}{1+t}.
\]
This means that
\[
f(t) = \frac{t}{1-t}.
\]
Now we have
\[
\frac{d}{dt} \ln(g(\bar{f}(t))) = \frac{Z(t)}{A(t)} = \frac{1}{1+t},
\]
and hence
\[
\ln(g(\bar{f}(t))) = \ln(1+t) \Rightarrow g(\bar{f}(t)) = 1+t.
\]
This implies that
\[
g(t) = 1 + f(t) = 1 + \frac{t}{1-t} = \frac{1}{1-t}.
\]
Thus
\[
[g, f] = \left[\frac{1}{1-t}, \frac{t}{1-t} \right]
\]
Thus \([g, f]^{-1}\) is the coefficient array of the Laguerre polynomials [5].

We finish by noting that the simple addition of \(t\) to \(A(t)\) has allowed us to go from the relatively complicated exponential Riordan array
\[
\begin{bmatrix}
\sqrt{3} e^{\frac{x^2}{2}} \\
\sqrt{3} \cos \left(\frac{\sqrt{3} t}{2} \right) - \sin \left(\frac{\sqrt{3} t}{2} \right) \\
\sqrt{3} \cos \left(\frac{\sqrt{3} t}{2} \right) - \sin \left(\frac{\sqrt{3} t}{2} \right)
\end{bmatrix}
\]
to the simple exponential Riordan array
\[
\begin{bmatrix}
\frac{1}{1-t}, t \\
\frac{1}{1-t}
\end{bmatrix}
\]

6 Appendix: exponential Riordan arrays

The exponential Riordan group [6, 9, 11], is a set of infinite lower-triangular integer matrices, where each matrix is defined by a pair of generating functions \(g(t) = g_0 + g_1 t + g_2 t^2 + \cdots\) and \(f(t) = f_1 t + f_2 t^2 + \cdots\) where \(g_0 \neq 0\) and \(f_1 \neq 0\). We usually assume that \(g_0 = f_1 = 1\).

The associated matrix is the matrix whose \(i\)-th column has exponential generating function \(g(t)f(t)^i/i!\) (the first column being indexed by 0). The matrix corresponding to the pair \(f, g\) is denoted by \([g, f]\). The group law is given by
\[
[g, f] \cdot [h, l] = [g(h \circ f), l \circ f].
\]
The identity for this law is \(I = [1, t] \) and the inverse of \([g, f] \) is \([g, f]^{-1} = [1/(g \circ \bar{f}), \bar{f}] \) where \(\bar{f} \) is the compositional inverse of \(f \).

If \(M \) is the matrix \([g, f]\), and \(u = (u_n)_{n \geq 0} \) is an integer sequence with exponential generating function \(U(t) \), then the sequence \(Mu \) has exponential generating function \(g(t)U(f(t)) \). Thus the row sums of the array \([g, f]\) have exponential generating function given by \(g(t)e^{f(t)} \) since the sequence \(1, 1, 1, \ldots \) has exponential generating function \(e^t \).

As an element of the group of exponential Riordan arrays, the binomial matrix \(B \) with \((n, k)\)-th element \(\binom{n}{k} \) is given by \(B = [e^t, t] \). By the above, the exponential generating function of its row sums is given by \(e^te^t = e^{2t} \), as expected (\(e^{2t} \) is the e.g.f. of \(2^n \)).

To each exponential Riordan array \(L = [g, f] \) is associated \([10, 11]\) a matrix \(P \) called its production matrix, which has bivariate g.f. given by

\[
e^{zt}(Z(t) + A(t)z)
\]

where

\[
A(t) = f'(\bar{f}(t)), \quad Z(t) = \frac{g'(\bar{f}(t))}{g(\bar{f}(t))}.
\]

We have

\[
P = L^{-1} \bar{L}
\]

where \(L \) \([16, 22]\) is the matrix \(L \) with its top row removed.

The ordinary Riordan group is described in \([18]\).

References

2010 Mathematics Subject Classification: Primary 11C20; Secondary 11B83, 15B36, 33C45. Keywords: exponential Riordan array, A sequence, Z sequence, production matrix, orthogonal polynomial.

(Concerned with sequences A004211, A007318, A007405, A009244, A014307, A048993, A049020, A049774, A060311, A100862, and A182822.)

Received October 8 2013; revised version received December 30 2013. Published in Journal of Integer Sequences, January 6 2014.

Return to Journal of Integer Sequences home page.