Representation of Integers by Near Quadratic Sequences

Labib Haddad
120 rue de Charonne
75011 Paris
France
labib.haddad@wanadoo.fr

Charles Helou
Department of Mathematics
Pennsylvania State University
25 Yearsley Mill Road
Media, PA 19063
USA
cxh22@psu.edu

Abstract
Following a statement of the well-known Erdős-Turán conjecture, Erdős mentioned the following even stronger conjecture: if the n-th term a_n of a sequence A of positive integers is bounded by αn^2, for some positive real constant α, then the number of representations of n as a sum of two terms from A is an unbounded function of n. Here we show that if a_n differs from αn^2 (or from a quadratic polynomial with rational coefficients $q(n)$) by at most $o(\sqrt{\log n})$, then the number of representations function is indeed unbounded.

1 Introduction
In 1941, Erdős and Turán [5] conjectured that if a sequence $A = \{a_1 < a_2 < \cdots < a_n < \cdots\}$ of positive integers is an asymptotic basis of the set $\mathbb{N} = \{0, 1, 2, \ldots\}$ of natural numbers,
i.e., if all large enough integers \(n \) are sums of two terms from \(A \), then the number of representations \(r_A(n) = \left| \{(a, a_j) \in A \times A : a_i + a_j = n \} \right| \) of \(n \), as a sum of two terms from \(A \), is unbounded. This is the well-known “Erdős-Turán conjecture”. A few years later (the earliest we are aware of), in 1955 and 1956, Erdős [6], and Erdős and Fuchs [7] asserted that an even stronger conjecture would be that if \(a_n \leq \alpha n^2 \), for all \(n \), with a real constant \(\alpha > 0 \), then \(\limsup r_A(n) = \infty \). This came to be known as the “generalized Erdős-Turán conjecture”. It is indeed stronger than the former one, since if \(A \) is an asymptotic basis of \(\mathbb{N} \), then \(a_n \ll n^2 \) [13, p. 105].

Much work has been done concerning the “Erdős-Turán conjecture”, e.g., [3, 7, 8, 16, 1, 21, 19], including disproofs of analogues of this conjecture in many semigroups other than \(\mathbb{N} \), e.g., [20, 16, 17, 11, 12, 2, 14]. In contrast, much less has been done about the “generalized Erdős-Turán conjecture”. In a previous, co-authored, paper [9], we studied the class of sequences that can replace \(\{\alpha n^2\} \) in the condition \(a_n \leq \alpha n^2 \) for all \(n \), to imply that \(r_A(n) \) is unbounded, and we gave several statements equivalent to the “generalized Erdős-Turán conjecture”. In particular, we showed that if the conjecture holds with \(\alpha = 1 \), then it holds with any \(\alpha > 0 \). Moreover, it is not difficult to see that if \(a_n = o(n^2) \), then the conjecture holds [9, 10]. So we can essentially focus on the case where \(a_n \) is, in a sense, “close” to a constant multiple of \(n^2 \), or to a quadratic polynomial in \(n \). This is basically the goal of the present paper. We thus show that if \(|a_n - \alpha n^2| = o(\sqrt{\log n}) \), with a real constant \(\alpha > 0 \), or if \(|a_n - q(n)| = o(\sqrt{\log n}) \), where \(q(n) \) is a quadratic polynomial with rational coefficients, then the representation function \(r_A(n) \) of \(A \) is unbounded.

2 Technical tools

Let \(C = \{c_1 < c_2 < \cdots < c_n < \cdots \} \subset \mathbb{R}^+ \) be a strictly increasing sequence, in the set \(\mathbb{R}^+ \) of real numbers \(\geq 0 \). For any \(x \in \mathbb{R}^+ \), let \(C[x] = C \cap [0, x] = \{c \in C : c \leq x\} \), and \(C(x) = |C[x]| \) the cardinality of \(C[x] \). Note that \(C(x) \) is finite for every \(x \geq 0 \) if and only if the sequence \(C \) is unbounded. This is in particular true when \(c_{n+1} - c_n \geq 1 \) for large enough \(n \), and more particularly if \(C \) is a subset of the set \(\mathbb{N} = \{0, 1, 2, 3, \ldots \} \) of natural numbers.

The subset \(C + C \) is defined by \(C + C = \{c + d : (c, d) \in C \times C\} \).

Now let \(A = \{a_1 < a_2 < \cdots < a_n < \cdots \} \subset \mathbb{N} \) be a strictly increasing sequence of natural numbers. In addition to the above notions, valid for \(A \) as for \(C \), the representation function \(r_A \) of \(A \) is defined by \(r_A(n) = \left| \{(a, b) \in A \times A : a + b = n\} \right| \), for \(n \in \mathbb{N} \), and we set \(s(A) = \sup_{n \in \mathbb{N}} r_A(n) \), in \(\mathbb{N} = \mathbb{N} \cup \{\infty\} \).

In the sequel, \(i, j, k, l, m, n \) generally denote positive integers, unless it is specified that they lie in \(\mathbb{N} \), i.e., that they are integers \(\geq 0 \), while \(x, y \) denote real numbers \(\geq 0 \), i.e., they lie in \(\mathbb{R}^+ \).

Note that if \(A = \{a_1 < a_2 < \cdots < a_n < \cdots \} \subset \mathbb{N}^* \), where \(\mathbb{N}^* = \{1, 2, 3, \ldots \} \) is the set of positive integers, then \(a_n \geq n \) for all \(n \in \mathbb{N}^* \).

For any \(x \in \mathbb{R}^+ \), let

\[
U_A(x) = \left| \{(a, b) \in A \times A : a + b \leq x\} \right| = \sum_{0 \leq n \leq x} r_A(n). \tag{1}
\]
Then
\[U_A(x) = \sum_{n \in \{A-x\}} r_A(n) \leq \sum_{n \in \{A+x\}} s(A) = (A + A)(x) \cdot s(A) \] (2)

and
\[
A(x)^2 = |\{(a, b) \in A \times A : a, b \leq x\}| \leq |\{(a, b) \in A \times A : a + b \leq 2x\}| = U_A(2x) \leq (A + A)(2x) \cdot s(A),
\] (3)

so that, for all \(x \in \mathbb{R}^+\),
\[
\frac{(A + A)(2x)}{A(x)^2} \cdot s(A) \geq 1.
\] (4)

Define
\[
h(A) = \liminf_{x \to \infty} \frac{(A + A)(2x)}{A(x)^2}.
\] (5)

Lemma 1. If \(h(A) = 0\), then \(s(A) = \infty\).

Proof. This follows immediately from (4). \(\square\)

Corollary 2. If \(\liminf_{n \to \infty} \frac{A(x)}{\sqrt{x}} > 0\) and \(\liminf_{n \to \infty} \frac{(A + A)(x)}{x} = 0\), then \(h(A) = 0\), and therefore \(s(A) = \infty\).

Proof. By assumption, \(\limsup_{n \to \infty} \frac{\sqrt{x}}{A(x)} = \frac{1}{\liminf_{n \to \infty} \frac{A(x)}{\sqrt{x}}}\) is finite, while \(\liminf_{n \to \infty} \frac{(A + A)(2x)}{2x} = 0\). So, using properties of the lower and upper limits, we get
\[
h(A) = \liminf_{x \to \infty} \frac{(A + A)(2x)}{A(x)^2} = 2 \liminf_{x \to \infty} \frac{(A + A)(2x)}{2x} \left(\frac{\sqrt{x}}{A(x)}\right)^2 \leq 2 \left(\liminf_{x \to \infty} \frac{(A + A)(2x)}{2x}\right) \cdot \left(\limsup_{x \to \infty} \frac{\sqrt{x}}{A(x)}\right)^2 = 0.
\]

The conclusion follows from Lemma 2.1. \(\square\)

Lemma 3. Let \(A = \{a_1 < a_2 < \cdots < a_n < \cdots\} \subseteq \mathbb{N}^+\) be a strictly increasing sequence of positive integers, and \(C = \{c_1 < c_2 < \cdots < c_n < \cdots\} \subseteq \mathbb{R}^+\). For \(x \in \mathbb{R}^+\), set \(e(x) = \sup_{n \leq x} |a_n - c_n|\). We then have, for all \(x \in \mathbb{R}^+\),
\[
(A + A)(x) \leq (4e(x) + 1) \cdot (C + C)(x + 2e(x)).
\] (6)

If we further assume that \(c_1 \geq 1\) and \(c_{n+1} - c_n \geq 1\) for all \(n \geq 1\), we then also have, for all \(x \in \mathbb{R}^+\),
\[
A(x) \geq C(x - e(x)).
\] (7)
Proof. Note first that the function \(e(x) \) is increasing, in the sense that \(x \leq y \) implies \(e(x) \leq e(y) \).

Note also that, since \(A \subset N^* \), we have \(i \leq a_i \) for all \(i \). So, for \(n \leq x \), if \(n = a_i + a_j \), then \(i \leq a_i \leq n \leq x \) and similarly \(j \leq x \), and therefore \(|n - c_i - c_j| = |a_i + a_j - c_i - c_j| \leq |a_i - c_i| + |a_j - c_j| \leq 2e(x) \). Hence

\[
(A + A)[x] = \{n \leq x : \exists i, j, n = a_i + a_j\} \subset \{n \leq x : \exists i, j, |n - c_i - c_j| \leq 2e(x)\},
\]

and setting \(s = c_i + c_j \), we get \(s \in C + C \) and \(|n - s| \leq 2e(x) \), so that \(s \leq n + 2e(x) \leq x + 2e(x) \), and therefore

\[
\{n \leq x : \exists i, j, |n - c_i - c_j| \leq 2e(x)\} \subset \{n : \exists s \in (C + C)[x + 2e(x)], |n - s| \leq 2e(x)\}.
\]

Thus

\[
(A + A)[x] \subset \bigcup_{s \in (C + C)[x + 2e(x)]} ([s - 2e(x), s + 2e(x)] \cap \mathbb{N}),
\]

and therefore

\[
(A + A)(x) \leq \sum_{n \in (C + C)[x + 2e(x)]} (4e(x) + 1) = (C + C)(x + 2e(x)) \cdot (4e(x) + 1).
\]

This proves (6).

Now, if \(c_1 \geq 1 \) and \(c_{n+1} - c_n \geq 1 \) for all \(n \), then \(c_n \geq n \) for all \(n \). So if \(c_n \leq x - e(x) \), then \(n \leq c_n \leq x \), so that \(|a_n - c_n| \leq e(x) \), and therefore \(a_n \leq c_n + e(x) \leq x \).

Hence \(\{n : c_n \leq x - e(x)\} \subset \{n : a_n \leq x\} \), and thus

\[
C(x - e(x)) = |\{n : c_n \leq x - e(x)\}| \leq |\{n : a_n \leq x\}| = A(x),
\]

which proves (7). \(\square \)

Lemma 4. Let \(A = \{a_1 < a_2 < \cdots < a_n < \cdots\} \subset N^* \) and \(C = \{c_1 < c_2 < \cdots < c_n < \cdots\} \subset \mathbb{R}^+ \) be two strictly increasing sequences in \(N^* \) and in \(\mathbb{R}^+ \), respectively. For \(x \in \mathbb{R}^+ \), set \(e(x) = \sup_{n \leq x} |a_n - c_n| \). Assume that \(e(x) \) is not identically zero, and that \(c_1 \geq 1 \) and \(c_{n+1} - c_n \geq 1 \) for all \(n \geq 1 \). Then the condition

\[
\liminf_{x \to \infty} \frac{e(2x) \cdot (C + C)(2x + 2e(2x))}{C(x - e(x))^2} = 0 \tag{H}
\]

implies that \(h(A) = 0 \), and therefore \(s(A) = \infty \).

Proof. Since \(e(x) \) is increasing and not identically zero, there exists a real constant \(t > 0 \) such that \(e(x) \geq \frac{1}{t} \) for large enough \(x \). In view of the inequalities (6) and (7) in Lemma 2.3, we have

\[
\frac{(A + A)(2x)}{A(x)^2} \leq \frac{(4e(2x) + 1) \cdot (C + C)(2x + 2e(2x))}{C(x - e(x))^2}.
\]
Moreover, for large enough x, we have $t\cdot e(2x) \geq 1$, and therefore $4e(2x)+1 \leq (4+t)\cdot e(2x)$. Thus

$$\frac{(A+A)(2x)}{A(x)^2} \leq (4+t)\frac{e(2x)\cdot(C+C)(2x+2e(2x))}{C(x-e(x))^2},$$

for large enough x, so that the condition (H) implies that $\lim \inf_{x \to \infty} \frac{(A+A)(2x)}{A(x)^2} = 0$, i.e., $h(A) = 0$, and therefore, by Lemma 2.1, $s(A) = \infty$. \hfill \Box

Remark 5. The scope of Lemma 2.4 is broader than it seems to be. Indeed, for a subset A of \mathbb{N}, modifying, removing or adding finitely many elements does not modify the fact that $s(A)$ is infinite or finite. Thus Lemma 2.4 can be used in more general situations than specified by its assumptions, as shown by the next result.

Fundamental Lemma 6. Let $B = \{b_1 < b_2 < \cdots < b_n < \cdots\} \subset \mathbb{N}$ and $D = \{d_1 < d_2 < \cdots < d_n < \cdots\} \subset \mathbb{R}^+$ be two strictly increasing sequences in \mathbb{N} and in \mathbb{R}^+ respectively. Assume that there exists an increasing function $f : \mathbb{R}^+ \to \mathbb{R}^+$ and a positive integer m such that $d_m \geq 1$, $d_{n+1} - d_n \geq 1$ for $n \geq m$, and $\sup_{m \leq n \leq x}|b_n - d_n| \leq f(x)$ for $x \geq m$. Then the condition

$$\lim \inf_{x \to \infty} \frac{f(2x)\cdot(D+D)(2x+2f(2x))}{D(x-f(x))^2} = 0$$

(K)

implies that $s(B) = \infty$.

Proof. For $n \in \mathbb{N}^*$, set $a_n = b_{n+m}$ and $c_n = d_{n+m}$, and let $A = \{a_1 < a_2 < \cdots < a_n < \cdots\} \subset \mathbb{N}^*$ and $C = \{c_1 < c_2 < \cdots < c_n < \cdots\} \subset \mathbb{R}^+$ be the strictly increasing sequences, in \mathbb{N}^* and \mathbb{R}^+, obtained by deleting the first m terms of B and D respectively. Then $c_1 = d_{m+1} \geq 2$ and $c_{n+1} - c_n = d_{n+m+1} - d_{n+m} \geq 1$ for $n \geq 1$. Moreover, setting $e(x) = \sup_{n \leq x}|a_n - c_n|$, for $x \in \mathbb{R}^+$, and using the assumptions on B and D, we have

$$e(x) = \sup_{n \leq x}|a_n - c_n| = \sup_{n \leq x}|b_{n+m} - d_{n+m}| = \sup_{m \leq i \leq x+m}|b_i - d_i| \leq f(x+m).$$

Thus, setting $y = x+m$, we have $e(x) \leq f(y)$, and since the functions e and f are increasing,

$$e(2x) \leq f(2x+m) \leq f(2y).$$

Also, taking into account that $C \subset D$ and $C+C \subset D+D$, so that $(C+C)(t) \leq (D+D)(t)$ for all $t \in \mathbb{R}^+$, and that the function $t \mapsto (C+C)(t)$ is increasing, we get

$$(C+C)(2x+2e(2x)) \leq (C+C)(2y+2f(2y)) \leq (D+D)(2y+2f(2y)).$$

Thus

$$e(2x)\cdot(C+C)(2x+2e(2x)) \leq f(2y)\cdot(D+D)(2y+2f(2y)), \quad (8)$$

for $x \in \mathbb{R}^+$, and $y = x+m$.

Moreover, for $t \geq m$, we have
\[
D(t) - C(t) = |\{d_n \in D : d_n \leq t\}| - |\{c_n \in C : c_n = d_{n+m} \leq t\}| = m
\]
and
\[
C(t) - C(t-m) = |\{c_n \in C : t-m < c_n \leq t\}| \leq m,
\]
since $c_{n+1} - c_n \geq 1$ for all $n \in \mathbb{N}^*$, so that $C(t) \leq C(t-m) + m$ and $D(t) = C(t) + m \leq C(t-m) + 2m$. Therefore $C(t-m) \geq D(t) - 2m$ for $t \geq m$. Hence, taking into account that the function $t \mapsto C(t)$ is increasing and that $e(x) \leq f(y)$ we get, for large enough x,
\[
C(x - e(x)) \geq C(x - f(y)) = C(y - m - f(y)) \geq D(y - f(y)) - 2m. \tag{9}
\]
It follows from (8) and (9) that, for large enough x and for $y = x + m$,
\[
\frac{e(2x) \cdot (C + C)(2x + 2e(2x))}{C(x - e(x))^2} \leq \frac{f(2y) \cdot (D + D)(2y + 2f(2y))}{(D(y - f(y)) - 2m)^2}. \tag{10}
\]
Set $P(x) = f(2x) \cdot (D + D)(2x + 2f(2x))$ and $Q(x) = D(x - f(x))$, and suppose that the condition (K) is satisfied, i.e., that $\liminf_{x \to \infty} \frac{P(x)}{Q(x)^2} = 0$. Then there exists a strictly increasing sequence $(x_n)_{n \geq 1}$ in \mathbb{R}^+, tending to infinity, such that $\lim_{n \to \infty} \frac{P(x_n)}{Q(x_n)^2} = 0$. Since $P(x)$ is an increasing unbounded function, $\lim_{n \to \infty} P(x_n) = \infty$, and therefore the sequence $(Q(x_n))_{n \geq 1}$ is unbounded. So there exists a subsequence $(x_{n_k})_{k \in \mathbb{N}^*}$ of $(x_n)_{n \geq 1}$ such that $\lim_{k \to \infty} Q(x_{n_k}) = \infty$,

while $\lim_{k \to \infty} \frac{P(x_{n_k})}{Q(x_{n_k})^2} = 0$. Hence $\lim_{k \to \infty} \frac{P(x_{n_k})}{(Q(x_{n_k}) - 2m)^2} = 0$, and therefore
\[
\liminf_{y \to \infty} \frac{f(2y) \cdot (D + D)(2y + 2f(2y))}{(D(y - f(y)) - 2m)^2} = \liminf_{x \to \infty} \frac{P(x)}{(Q(x) - 2m)^2} = 0.
\]
It then follows from (10) that $\liminf_{x \to \infty} \frac{e(2x) \cdot (C + C)(2x + 2e(2x))}{C(x - e(x))^2} = 0$. Thus the condition (H) of Lemma 2.4 holds, and therefore, in view of this Lemma, $s(A) = \infty$. As $A \subset B$, it follows that $s(B) = \infty$ too.

Remark 7. In the statement of Lemma 2.6, we may replace D by $D' = D + \gamma$, i.e., d_n by $d'_n = d_n + \gamma$ ($n \in \mathbb{N}^*$), where γ is any fixed real number, since a translation of the general term of D does not affect the condition (K).

3 Main results

Theorem 8. Let $A = \{a_1 < a_2 < \cdots < a_n < \cdots\} \subset \mathbb{N}$ be a strictly increasing sequence of natural numbers, and $q(x) = ax^2$ with a real number $a > 0$. If the function $e(x) = \sup_{n \leq x} |a_n - q(n)|$ ($x \in \mathbb{R}^+$) satisfies $e(x) = o\left(\sqrt{\log x}\right)$ as $x \to \infty$, then $s(A) = \infty$.
Proof. We apply Lemma 2.6 to \(B = A \) and \(D = \{ q(1) < q(2) < \cdots < q(n) < \cdots \} \). Indeed, the sequence \(\langle q(n) \rangle_{n \geq 1} \) is strictly increasing and unbounded, with \(q(n+1) - q(n) = \alpha (2n+1) \) unbounded too, so that \(q(n) \geq 1 \) and \(q(n+1) - q(n) \geq 1 \) for large enough \(n \). There remains to show that the condition (K) holds for \(f(x) = e(x) \).

Let \(S = \{ n^2 : n \in \mathbb{N}^* \} \). By a classical result of Landau [15], there exists a constant \(c > 0 \) such that \((S + S) (x) \sim c \frac{x}{\log x} \) as \(x \to \infty \).

For \(m, n \in \mathbb{N}^* \) and \(x \in \mathbb{R}^+ \), as \(q(m) + q(n) \leq x \) is equivalent to \(m^2 + n^2 \leq \frac{x}{\alpha} \), we have
\[
(D + D) (x) = (S + S) \left(\frac{x}{\alpha} \right) \sim c \frac{x}{\alpha \sqrt{\log x}},
\]
so that
\[
(D + D) (x) \leq c_1 \frac{x}{\sqrt{\log x}},
\]
for large enough \(x \), with a constant \(c_1 > \frac{c}{\alpha} \).

Moreover, as \(q(n) \leq x \) if and only if \(n \leq \sqrt{\frac{x}{\alpha}} \), we also have \(D(x) = \left[\sqrt{\frac{x}{\alpha}} \right] > \sqrt{\frac{x}{\alpha}} - 1 \).

It follows that, for large enough \(x \),
\[
\frac{e(2x) \cdot (D + D) (2x + 2e(2x))}{D(x - e(x))^2} \leq \frac{c_1 \cdot e(2x) \cdot (2x + 2e(2x))}{\sqrt{\log (2x + 2e(2x))} \left(\sqrt{\frac{x-e(x)}{\alpha}} - 1 \right)^2} = \frac{c_1 \cdot e(2x) \cdot (2x + 2e(2x))}{\sqrt{\log (2x + 2e(2x))} \left(\sqrt{x - e(x) - \sqrt{\alpha}} \right)^2}.
\]

As \(e(x) = o \left(\sqrt{\log x} \right) \),
\[
\frac{e(2x) \cdot (2x + 2e(2x))}{\sqrt{\log (2x + 2e(2x))} \left(\sqrt{x - e(x) - \sqrt{\alpha}} \right)^2} \sim \frac{2x \cdot e(2x)}{\sqrt{\log (2x)} \cdot x} \sim \frac{2e(2x)}{\sqrt{\log (2x)}},
\]
and, since \(e(x) = o \left(\sqrt{\log x} \right) \), we have \(\lim_{x \to \infty} \frac{2e(2x)}{\sqrt{\log (2x)}} = 0 \). Therefore
\[
\lim_{x \to \infty} \frac{e(2x) \cdot (D + D) (2x + 2e(2x))}{D(x - e(x))^2} = 0,
\]
and the condition (K) holds. Thus, by Lemma 2.6, \(s(B) = \infty \), i.e., \(s(A) = \infty \).

Remark 9. In the statement of Theorem 3.1, we may replace \(q(x) = \alpha x^2 \) by \(q(x) = \alpha x^2 + \gamma \), where \(\gamma \) is any real constant, in view of Remark 2.7.

Also, if \(A = \{ a_n = [\alpha n^2 + \gamma] : n \in \mathbb{N} \} \) is the set of the integral parts \([\alpha n^2 + \gamma] = [q(n)] \), then \(s(A) = \infty \), since \(e(x) = \sup_{n \leq x} |a_n - q(n)| \leq 1 \) trivially satisfies the condition in Theorem 3.1.
Theorem 10. Let \(A = \{a_1 < a_2 < \cdots < a_n < \cdots \} \subset \mathbb{N} \) and \(q(x) \) be a quadratic polynomial with rational coefficients and positive leading coefficient. If the function \(e(x) = \sup_{n \leq x} |a_n - q(n)| \) (\(x \in \mathbb{R}^+ \)) satisfies \(e(x) = o \left(\sqrt[4]{\log x} \right) \) as \(x \to \infty \), then \(s(A) = \infty \).

Proof. As \(q(x) \) has rational coefficients, there exist integers \(a, b, c, d \), with \(a, d > 0 \), such that \(dq(x) = (ax + b)^2 + c \).

Let \(b_n = da_n - c \) and \(d_n = (an + b)^2 \), for \(n \in \mathbb{N}^* \). Clearly, there exists \(m \in \mathbb{N}^* \) such that \(b_m \geq 1 \), \(d_m \geq 1 \) and \(d_{m+1} - d_n \geq 1 \) for \(n \geq m \). Set \(B = \{b_n : n \geq m\} \) and \(D = \{d_n : n \geq m\} \). Then \(B \) and \(D \) are strictly increasing sequences in \(\mathbb{N} \), and, for all \(n \geq m \),

\[
|d_n - b_n| = |(an + b)^2 - da_n + c| = d|q(n) - a_n|.
\]

For \(x > m \), let \(f(x) = \sup_{m \leq n \leq x} |d_n - b_n| \), for \(x \in \mathbb{R}^+ \). Then \(f(x) \) is an increasing nonnegative function satisfying \(f(x) \leq d \cdot e(x) \), so that \(f(x) = o \left(\sqrt[4]{\log x} \right) \) (like \(e(x) \)). Thus, we may apply Lemma 2.6, provided we show that the condition (K) is satisfied.

Let \(S = \{n^2 : n \in \mathbb{N}\} \). Then \(D \subset S \), and therefore \(D + D \subset S + S \), so that \((D + D)(x) \leq (S + S)(x) \), for \(x \in \mathbb{R}^+ \).

By Landau’s theorem \([15] \quad (S + S)(x) \sim c_0 \frac{x}{\sqrt[4]{\log x}} \), with a constant \(c_0 > 0 \). So there exists a constant \(c_1 > 0 \) such that \((D + D)(x) \leq (S + S)(x) \leq c_1 \frac{x}{\sqrt[4]{\log x}} \), and therefore

\[
(D + D)(2x + 2f(2x)) \leq c_1 \frac{2x + 2f(2x)}{\sqrt[4]{(2x + 2f(2x))}}.
\]

(11)

Moreover, for \(x > \text{max}(m, b^2) \), if \(n \leq \frac{\sqrt{x}}{a} - |b| \), then \(d_n = (an + b)^2 \leq x \). Hence, for large enough \(x \),

\[
D(x) = |\{n \geq m : d_n \leq x\}| \geq \left| \left\{ n \geq m : n \leq \frac{\sqrt{x}}{a} - \frac{|b|}{a} \right\} \right|
\]

\[
\geq \frac{\sqrt{x} - |b|}{a} - m \geq c_2\sqrt{x} - c_3,
\]

with constants \(c_2, c_3 > 0 \), and therefore

\[
D(x) - f(x) \geq c_2\sqrt{x} - f(x) - c_3.
\]

(12)

It follows from (11) and (12) that, for large enough \(x \),

\[
\frac{f(2x) \cdot (D + D)(2x + 2f(2x))}{D(x - f(x))^2} \leq c_1 \frac{f(2x) \cdot (2x + 2f(2x))}{\sqrt[4]{(2x + 2f(2x))} \left(c_2\sqrt{x - f(x)} - c_3 \right)^2},
\]

and, since \(f(x) = o \left(\sqrt[4]{\log x} \right) \), we have

\[
\frac{f(2x) \cdot (2x + 2f(2x))}{\sqrt[4]{(2x + 2f(2x))} \left(c_2\sqrt{x - f(x)} - c_3 \right)^2} \sim \frac{2f(2x)}{c_2^2\sqrt[4]{\log x}} = o(1).
\]
Therefore
\[\liminf_{x \to \infty} \frac{f(2x) \cdot (D + D)(2x + 2f(2x))}{D(x - f(x))^2} = 0. \]
Thus the condition (K) is satisfied, and by Lemma 2.6, \(s(B) = \infty \). As \(B \) is a translate of a homothetic of a subsequence \(A_m = \{a_n : n \geq m\} \) of \(A \), namely \(B = d \cdot A_m + |c| \), we conclude, e.g., see [9], that \(s(A_m) = s(B) = \infty \), and therefore \(s(A) = \infty \).

\[\square \]

4 Acknowledgment

We thank an anonymous reader who suggested the use of Landau’s theorem to improve a previous result.

References

2010 *Mathematics Subject Classification*: Primary 11B34; Secondary 11B83.
Keywords: sequences, representation functions, quadratic, Erdős-Turán conjecture.

Received July 19 2012; revised version received October 14 2012. Published in *Journal of Integer Sequences*, October 23 2012.

Return to *Journal of Integer Sequences* home page.