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Abstract

A Wieferich prime is a prime p such that 2p−1 ≡ 1 (mod p2). Despite several
intensive searches, only two Wieferich primes are known: p = 1093 and p = 3511. This
paper describes a new search algorithm for Wieferich primes using double-precision
Montgomery arithmetic and a memoryless sieve, which runs significantly faster than
previously published algorithms, allowing us to report that there are no other Wieferich
primes p < 6.7 × 1015. Furthermore, our method allowed for the efficent collection of
statistical data on Fermat quotients, leading to a strong empirical confirmation of a
conjecture of Crandall, Dilcher, and Pomerance. Our methods proved flexible enough
to search for new solutions of ap−1 ≡ 1 (mod p2) for other small values of a, and to
extend the search for Fibonacci-Wieferich primes. We conclude, among other things,
that there are no Fibonacci-Wieferich primes less than p < 9.7 × 1014.
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1 Introduction

During the 19th and 20th centuries, several different classes of prime numbers were identified
and studied because of their relationship to Fermat’s Last Theorem (FLT). Most notable
among these are Fibonacci-Wieferich primes, Wilson primes, and Wieferich primes. For
example, if the first case of Fermat’s Last Theorem holds for a prime p, then p must be a
Fibonacci-Wieferich prime [22]. Similarly, any exponent p which permits a solution to the
FLT equation xp + yp = zp, while being coprime to x, y, and z, is a Wieferich prime. The
relationship between Wilson primes and FLT is more complex; see [13]. Although it no
longer makes sense to search for a solution to the equation in Fermat’s Last Theorem, the
questions inspired by these classes of primes still remain, and we can now turn our attention
to the study of these primes for their own sake.

Of the three above-mentioned classes of primes, Wieferich primes are perhaps the simplest
to define. Define the Fermat quotient of 2 mod p to be

q2(p) =
ap−1 − 1

p
.

It is known from Fermat’s little theorem that for any prime p, 2p−1−1 is always divisible
by p, and therefore q2(p) is always an integer. If q2(p) vanishes modulo p (that is, if 2p−1 − 1
is divisible by p2), p is said to be Wieferich. These primes were first studied by Arthur
Wieferich, who in 1909 related them to Fermat’s Last Theorem [23].

Although Wieferich himself found no example of such a prime, W. Meissner [15] in 1913
found that 1093 was Wieferich, and in 1922 N. G. W. H. Beeger [1] showed that 3511 was
Wieferich, also. Since 1922, however, no new examples have been found.

2 Previous Searches

Exhaustive searches for new Wieferich primes began with Beeger, and continue today. The
last eighty years have seen first computers, then new algorithmic techniques, and finally
distributed computing applied to the search for Wieferich primes. Because we have been
unable to find a comprehensive summary of the history of these searches in the literature,
one has been compiled in Table 1.

The most recent of these searches, that of Knauer and Richstein, used a distributed
approach, and incorporated more than 250 client computers during the course of their search,
but in order to include as many computers as possible they were unable to use many of the
standard optimizations sometimes used in a search for Wieferich primes. Notably, their code
assumed only a 32-bit processor on client machines.

3 Improved Search Methods

Our search employed a number of new algorithmic enhancements not used in previous
searches. For computations modulo p2, we used a new “double-precision” variant Mont-
gomery arithmetic. Finally, we used a new type of “memoryless” sieve to quickly eliminate
composites.
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Table 1: Previous Wieferich prime searches
Search bound Author Year

16000 Beeger [2] 1940
50000 Fröberg [7] unknown
100000 Kravitz [11] 1960
200183 Pearson [18] 1964
500000 Riesel [20] 1964
3×107 Fröberg [8] 1968
3×109 Brillhart, Tonascia, and Weinberger [3] 1971
6×109 Lehmer [12] 1981

6.1×1010 Clark c. 1996
4×1012 Crandall, Dilcher, and Pomerance [5] 1997

4.6×1013 Brown and McIntosh [4] 2001
2×1014 Crump [6] 2002

1.25×1015 Knauer and Richstein [10] 2005

3.1 Faster Arithmetic

Our first task was to reduce the time for computing Fermat quotients to about 1µs (for the
machines we had at hand). This was accomplished by using double-precision Montgomery
arithmetic.

The idea behind (single-precision) Montgomery arithmetic modulo p is that instead of
the ring Z/pZ, we can choose a parameter r coprime to p, and use the isomorphic ring

M(p, r) = ({0, 1, . . . , p − 1}, 0, e,⊖,⊕,⊗)

with the usual negation ⊖x = (−x) mod p, addition x ⊕ y = (x + y) mod p and additive
identity 0, but where multiplication is defined by x ⊗ y = xyr−1 mod p and, consequently,
the multiplicative identity is defined by e = r mod p.

The advantage of this is that, by choosing r wisely, it is possible to arrange that the
product x⊗y can always be computed without resorting to division by p. When the modulus
p is odd, one such choice is r = 2n > p, which corresponds to the original idea of P. L.
Montgomery [16]. For double-precision Montgomery arithmetic, we use the same choice for
r, but the modulus is now p2. We also use a double-precision representation for the elements
of M(p2, 2n), which consists in representing x ∈ {0, 1, . . . , p2 − 1} as an ordered pair (x0, x1)
where x = x0 + px1 and 0 ≤ x0, x1 ≤ p − 1. Addition and subtraction of such pairs is
straightforward. Multiplication is not so obvious, but it can still be done using without
resorting to division.

The following result shows how to multiply two double-precision elements of M(p2, 2n)
using only multiplication, addition, and subtraction of nonnegative n-bit integers.

Lemma 1. Given two odd numbers p, q such that 0 < p, q < 2n and pq ≡ 1 (mod 2n)
as parameters. The product of two double-precision elements of M(p2, 2n) can be computed
using at most 7 multiplications and 8 additions/subtractions of nonnegative n-bit integers.
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The square of a double-precision element of M(p2, 2n) can be computed using at most 6
multiplications and 8 additions/subtractions of nonnegative n-bit integers.

Proof. Let x0 + x1p and y0 + y1p be double-precision elements of M(p2, 2n). Thus 0 ≤
x0, x1, y0, y1 ≤ p − 1.

First compute:

t0 + t12
n := x0y0, where 0 ≤ t0 ≤ 2n − 1;

u0 + u12
n := qt0, where 0 ≤ u0 ≤ 2n − 1;

v0 + v12
n := pu0, where 0 ≤ v0 ≤ 2n − 1.

This requires 3 multiplications. Note that t0 = v0 since pq ≡ 1 (mod 2n), and so

x0y0 − pu0 = 2n(t1 − v1). (1)

Furthermore, note that 0 ≤ t1, v1 ≤ p − 1.
Next compute:

t′0 + t′12
n := x0y1 + x1y0 + u0, where 0 ≤ t′0 ≤ 2n − 1;

u′
0 + u′

12
n := qt′0, where 0 ≤ u′

0 ≤ 2n − 1;

v′
0 + v′

12
n := pu′

0, where 0 ≤ v′
0 ≤ 2n − 1.

This requires 4 multiplications and 3 additions (with carry). Again, t′0 = v′
0 since pq ≡ 1

(mod 2n), and so
(x0y1 + x1y0 + u0) − pu′

0 = 2n(t′1 − v′
1). (2)

Furthermore, note that 0 ≤ t′1 ≤ 2p − 1 and 0 ≤ v′
1 ≤ p − 1.

Combining (1) and (2), we find that

(x0 + x1p)(y0 + y1p) ≡ x0y0 + (x0y1 + x1y0)p (mod p2)

≡ 2n(t1 − v1) + 2n(t′1 − v′
1)p

Since −p < t1 − v1 < p and −p < t′1 − v′
1 < 2p, with at most 5 more additions/subtractions,

we can find z0, z1 such that

(x0 + x1p)(y0 + y1p) ≡ 2n(z0 + z1p) (mod p)

and 0 ≤ z0, z1 ≤ p − 1.
In total, this process requires at most 7 multiplications and 8 additions (possibly with

carry). For squaring, we have x0y1 = x1y0, so we can save 1 multiplication by computing
this product only once.

For comparison, single-precision Montgomery multiplication in M(p2, 22n) requires 3 multi-
plications and up to 2 additions/subtractions of nonnegative 2n-bit integers. For small n,
multiplication of 2n-bit integers takes at least 3 times as long as multiplication of n-bit inte-
gers, and addition of 2n-bit integers takes 2 times as long as addition of n-bit integers. Since
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multiplication is usually much slower than addition, double-precision Montgomery squaring
results in approximately 30% improvement over single-precision Montgomery squaring.

To test whether p is a Wieferich prime, we need to check whether 2p−1 ≡ 1 (mod p2)
or, equivalently, whether 2(p−1)/2 ≡ ±1 (mod p2), as suggested by Crandall, et al. [5]. Our
implementation used a standard binary powering ladder to accomplish this.

Theorem 2. Given a n-bit prime number p (n ≥ 4), we can test whether 2(p−1)/2 ≡
±1 (mod p2) using at most 6n + 2 lg(n) − 10 multiplications and 12n + lg(n) − 13 addi-
tions/subtractions of nonnegative n-bit integers.

Proof. We do the computations using double-precision Montgomery arithmetic in M(p2, 2n).
To get started, we need to compute the auxiliary parameter q such that pq ≡ 1 (mod 2n).
This can be done in many ways; our implementation used a Newton iteration that requires
2 lg(n) − 4 multiplications and lg(n) − 2 subtractions (of ≤ n/2-bit integers).

To get started with the binary powering ladder, we need to compute the double-precision
representation of the multiplicative unit 2n. Since p has n-bits, this can be done with only
1 subtraction.

Finally, the (left-to-right) binary powering ladder with the (n−1)-bit exponent (p−1)/2
requires n − 1 squarings and at most n − 1 doublings. Each squaring uses 6 multiplications
and 8 additions/subtractions and each doubling uses up to 4 additions/subtractions. In
total, this gives 6n − 6 multiplications and up to 12n − 12 additions/subtractions.

3.2 Faster Sieving

Previous searches of Wieferich primes employed a segmented sieve of Eratosthenes to com-
pletely sieve an interval for primes before testing those primes for being Wieferich. Using the
testing methods described above, we found that testing a single number for being Wieferich
was quite fast (about 1µs), and that therefore much of our computing time would be spent
sieving.

For traditional sieves, most of the sieving time is spent sieving small primes. Indeed,
sieving an interval of length ℓ for the prime p requires about ℓ/p memory write operations. So,
for example, it takes about as much time to sieve an interval for the six primes 2, 3, 5, 7, 11, 13
as it takes to sieve the same interval for the primes 17, 19, 23, . . . , 82139. With this in mind,
we began to look for better ways to sieve out multiples of very small primes. Since memory
operations are usually much more costly than elementary arithmetic operations, we looked
for sieves that require little or no memory.

3.2.1 The Magic Sieve

Sieving for a few small primes p1, . . . , pk amounts to enumerating the elements of the unit
group modulo M = p1 · · · pk. Our first idea was to make better use of the structure of the
unit group (Z/MZ)∗. After a few experiments, we found a special number that we ended up
calling the Magic Modulus :

M = 2 · 3 · 5 · 7 · 11 · 17 · 23 · 29 · 47 · 53 · 59 · 83 = 319514496269430.
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This number was chosen because of the simple structure of the unit group mod M . Indeed,
the group (Z/MZ)∗ has a large cyclic factor of order 6569843280, generated by 31, and a
second factor of order 8192 = 213. The integers in the interval [kM + 1, (k + 1)M ] that are
coprime to M can be listed in a rectangular array

xij = kM + (ai · 31j mod M) (0 ≤ i < 8192, 0 ≤ j < 6569843280)

where the numbers ai are chosen representatives of the cosets of the cyclic group 〈31〉 in
(Z/MZ)∗. Given a coset representative ai, listing the integers xij (0 ≤ j < 6569843280) only
involves multiplying by 31, which can be accomplished by five doubling and one subtraction
operation modulo M and essentially no memory access.

While the Magic Sieve is somewhat less efficient than the Spin Sieve (described below), it
has the advantage that it is easy to implement and requires essentially no memory storage.
In fact, our implementation used only 104 bytes of data to be stored in memory. The
performance of the Magic Sieve was adequate for our purposes — we only had to compute
Fermat quotients for 16.8% of the integers in an interval.

3.2.2 The Spin Sieve

For optimal results, a sieve should use the first few primes 2, 3, . . . , pk. A weakness of the
Magic Sieve is that it is sometimes preferable to omit a few small primes so that the unit
group has a large cyclic factor. The Spin Sieve does away with the reliance on the structure
of the unit group, while, like the Magic Sieve, requiring very little memory storage.

The Spin Sieve was inspired by Pritchard’s Wheel Sieve [19]. A similar idea was in-
dependently discovered by Sorenson [21], from whom we borrowed some implementation
ideas.

The idea behind the Spin Sieve is to find a simple bijection between the set of k-tuples

Tk = {1} × {1, 2} × {1, 2, 3, 4} × · · · × {1, . . . , pk − 1}

and the set
Ak = {x : 0 < x < Mk, (x,Mk) = 1}

where Mk = 2 · 3 · 5 · · · pk. This bijection sk : Tk → Ak is defined recursively by s1(1) = 1,
and

sk(t1, . . . , tk) = sk−1(t1, . . . , tk−1) + Mk−1((rk(t1, . . . , tk−1) + tk) mod pk)

where rk : Tk−1 → {0, . . . , pk − 1} satisfies

sk−1(t1, . . . , tk−1) + Mk−1rk(t1, . . . , tk−1) ≡ 0 (mod pk).

While the definition of sk is somewhat unwieldy, it is rather simple to compute the values
of sk in succession with the lexicographic ordering of Tk. This “spinning” operation is the
origin of the name of the sieve.

There are many ways to use the values of sk. In our implementation, for each value
of s10, we further sieve (in the traditional way) the arithmetic progression s10(t1, . . . , t10)
(mod M10) for the primes 31, . . . , 65521 and compute the Fermat quotients of the remaining
values. On average, less than 15.8% of numbers survive the Spin Sieve, then about 32% of
the remaining numbers survive the second sieve, so we only compute Fermat quotients for
approximately 5% of the numbers in a given interval.
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4 Other applications

4.1 Base-a Wieferich Primes

The definition of Wieferich prime uses base 2 for historical reasons, but mathematically there
is no particular reason why we can’t consider other bases as well. In an analogy to the base-2
case, define the Fermat coefficient base-a of p to be

qa(p) =
ap−1 − 1

p
.

Primes for which qa(p) vanishes modulo p are sometimes called base-a Wieferich primes.
Using the methods described above, we searched for solutions to this equation of a = 3, 5,
and 7. For each of these bases, we looked for solutions up to about 9.7 × 1014 (or, more
precisely, solutions not greater than (2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29) · 1.5 × 105). The
previous record for searches with a = 3 and a = 5 was held by Keller and Richstein [9], who
searched to 1011. The previous record for a = 7 belonged to Montgomery [17], who searched
to 232. We found no new base-a Wieferich primes for any of these bases, and therefore there
are still only two known solutions for each base 2, 3, and 7, and six solutions for base 5. We
do not know whether there is any significance to larger number of base-5 solutions; this may
be simply a statistical aberration. We also found 203 primes p with base-3 Fermat quotients
less than 100, 179 with base-5, and 212 for base-7. These values, together with near-misses
of larger Fermat quotient, are also available on the project web page, while primes with small
relative Fermat coefficients base-a are reported in Tables 5–7.

4.2 Fibonacci-Wieferich primes

Another class of primes initially defined because of Fermat’s Last Theorem are the Fibonacci-
Wieferich primes, sometimes called Wall-Sun-Sun primes. Let Fu denotes the uth Fibonacci
number, and

(

p
5

)

denotes the Legendre symbol; that is,

(p

5

)

=











1, if p ≡ ±1 (mod 5);

−1, if p ≡ ±2 (mod 5);

0, if p ≡ 0 (mod 5).

Then although for any prime p,

Fp−( p

5
) ≡ 0 (mod p),

there are no known solutions to

Fp−( p

5
) ≡ 0 (mod p2). (3)

Any solution to (3) is a Fibonacci-Wieferich prime. Previous searches for Fibonacci-Wieferich
primes these primes have extended as far as to 2.0×1014 [14] by McIntosh and Roettger. By
modifying the methods described above, we were also able to use our code in the search for
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these primes. We were able to search to about 9.7 × 1014 (or, more precisely, solutions not
greater than (2·3·5·7·11·13·17·19·23·29)·1.5×105), in which space no Fibonacci-Wieferich
primes were found. We did, however, find several new “near misses” – those primes for which
Fp−( p

5
) is small (mod p2). These are reported in Table 8. A more extensive list of near-

misses for Fibonacci-Wieferich primes, together with the near misses for Wieferich primes
of each base we studied, will be available on the project web page. After we completed this
work, we discovered that McIntosh and Roettger had extended the search described their
search [14] to 1015. Our values match theirs precisely. Because their new values have not yet
been published, we include them here.

4.3 Computational considerations with Fibonacci-Wieferich primes

Searching for Fibonacci-Wieferich primes involves calculating Fp−( p

5
) (mod p2), for (fairly)

large p. Naturally space and memory considerations keep us from computing Fp−( p

5
) directly.

Instead we do these calculations by recalling a well-known identity, namely that

(

1 1
1 0

)n

=

(

Fn+1 Fn

Fn Fn−1

)

.

By doing all these computations modulo n2 for some n, and the same type of binary ladder
that we used above, we can compute our values quite quickly. In fact, we can save even more
time by noting that all of our matrix calculations involve either squaring, or multiplying

by

(

1 1
1 0

)

. Although naively multiplying two 2 × 2 matrices requires eight multiplications

and four additions, squaring a symmetric matrix requires only three squares a2, b2, c2, one
product (a + c) · b, and 3 additions:

(

a b
b c

)2

=

(

a2 + b2 (a + c) · b
(a + c) · b b2 + c2

)

.

After implementing this algorithm, a test for a Fibonacci-Wieferich prime runs about four
times slower than testing a Wieferich prime. In practice, since some of the multiplications
can be done in parallel, the test takes a bit less than four times the time for Wieferich primes.

5 The Computation

The largest part of our computation was the search for Wieferich primes to 6.7× 1015. This
was performed on DISCOVERY cluster at Dartmouth College, a cluster of (at the time)
about 500 AMD Opteron nodes with 64-bit processors. We ran our code on 24 processors for
a period of about 200 days. For short periods of low cluster load, we utilized more processors,
once reaching a total of 96. At other times, our computation was tabled for higher priority
tasks. Altogether, the search used approximately 12000 CPU days, a value that compares
well with that of the previous record search, which used (based on the information provided
by Knauer and Richstein) used roughly 50000 CPU days – although on slower computers.
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The searches for base-3, 5, and 7 Wieferich primes, along with the search for Fibonacci-
Wieferich primes, were performed on the Condor cluster in the Dartmouth College Math-
ematics Department during low-load times over a period of many months. We used be-
tween one and eighteen 64-bit Linux machines of various architectures. Computation times
were carefully recorded for these runs. In the following table, the times are recorded:
For (base-2) Wieferich primes, the total time taken for the computation [N, 6.7 × 1015],
and for all other primes, the time taken for computing the range [N, 150000N ], where
N = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 = 6469693230. (Computations of the range
[0, N ] were very short, and were implemented with unsophisticated methods.)

Table 2: Time used in CPU days for calculations (Range values are approximate; see dis-
cussion above for precise values)

Search Range CPU Days
Wieferich primes [6.5 × 109, 6.7 × 1015] 12907.97
Base-3 Wieferich [6.5 × 109, 9.7 × 1014] 714.54
Base-5 Wieferich [6.5 × 109, 9.7 × 1014] 812.14
Base-7 Wieferich [6.5 × 109, 9.7 × 1014] 916.67
Fibonacci-Wieferich [6.5 × 109, 9.7 × 1014] 1978.49

6 Results

6.1 Wieferich and near-Wieferich primes

As we stated earlier, no new (base-2) Wieferich primes were found. It has become standard
practice to report “near-Wieferich” primes; that is, those p for which 2(p−1)/2 ≡ ±1 + Ap
(mod p2), where |A| ≤ 100. However, as the magnitude of the primes under consideration
grows, the density of the near-Wieferich primes diminishes, and there are fewer to report. We
propose, therefore, a new definition: a near-Wieferich prime is one for which the value of A/p
is small; say less than 10−13. Table 4 gives all such primes not greater than 6.7 × 1015. For
base-3 Wieferich primes, such a definition excludes some 200 previously unreported primes
with |A| < 100, and simliar numbers are excluded for base-5 and base-7 primes. Rather than
give a table of all these primes here, their values will be given on the project webpage.

We might well ask whether our results were to be expected: that is, should we expect to
find any Wieferich primes in the region [1.25×1015, 6.7×1015]? Certainly A = A(p) can take
on any of p values (mod p). Assuming that A takes these values randomly, the “probability”
that A takes any particular value (say, 0) is 1/p. From this, a heuristic is given in [5] that
the expected number of Wieferich primes in the interval [x, y] is

∑

x≤p≤y

1

p
≈ log

(

log y

log x

)

= log log y − log log x. (4)

From this we would conclude that the expected number of Wieferich primes in our interval
is .0472, and therefore the lack of such primes there is not surprising.
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Because our program recorded all p with “small” A (that is, all those for which |A| <
224), we compiled a large data set which can be used to give more rigorous (experimental)
confirmation of this conjecture. Indeed, our program recorded more than 2.1 million primes
p for which A < 224. Using this data, we checked the following conjecture, which follows
from the same heuristic as does equation (4):

Conjecture 3 (Crandall, Dilcher, and Pomerance). The number of prime p ∈ [a, b] for which
A ∈ [K,L] is asymptotically

(L − K) · (log log b − log log a).

The table below presents a small snapshot of our experimental results confirming this
conjecture. Complete data will be available on our webpage. In Table 3, the values in row
i, column k reflect the number of p ∈ [i× 1014, (i + 1)× 1014] with A ∈ [4(k − 1)× 106, 4k ×
106). Overall, the conjecture holds up very well. Indeed, in the strip given by k = 2,

Table 3:
i k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 Expected
15 7451 7473 7435 7315 7511 7356 7361 7423 7380.8
16 6779 6897 6999 6862 6858 6942 6879 6941 6920.8
17 6449 6448 6545 6480 6391 6497 6420 6622 6514.2
18 6000 6135 6099 6028 6071 6080 6256 6146 6152.1
19 6053 5887 5839 5866 5854 5752 5911 5831 5827.7

the relative error between the conjectured and experimental values is never greater than
5.5%. Furthermore, we can plot conjectured and actual numbers of near-Wieferich primes
for different values of i. The result is a graph that looks remarkably like a straight line. Let
xi be the expected number primes p in the ith interval [i × 1014, (i + 1) × 1014) for which
A < 4 × 106, and let yi be the actual number of such p in the same interval (the values in
column 1). We expect from Conjecture 3 that for any i, yi ≈ xi. In fact, linear regression
on the two data sets returns a best fit equation of

y = 0.999958129x + 9.7

(with R2 = .9992), giving strong experimental agreement with the conjectured value. Similar
tests using different parts of our data show no meaningful disagreement between the values
of A and what is expected heuristically. A data set of all near misses with Fermat quotients
less than 224 (comprising roughly 2 million primes) is available on the project web page.
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Table 4: Primes p < 6.7 × 1015 for which 2p−1 ≡ 1 + Ap (mod p2), with |A/p| < 10−13.
(Values of |A/p| are given in multiples of 10−14.)

p A |A/p| p A |A/p|
1093 0 0
3511 0 0

765760560131939 −76 9.925 3723113065138349 −36 0.967
993048728162299 +81 8.157 3925342714781797 −139 3.541

1302848719581529 +76 5.833 3948546628939699 −186 4.711
1515362530042687 +149 9.833 4032459967159163 −172 4.265
1680898792774051 −96 5.711 4143792274787999 +216 5.213
1865546314599557 +75 4.020 4150209531584437 +48 1.157
1885825033325021 +158 8.378 5109286219780877 −79 1.546
2276306935816523 +6 0.264 5131427559624857 −36 0.702
2576594157291871 −123 4.774 5294488110626977 −31 0.586
2718566561783551 +203 7.467 5367369195612269 +318 5.925
2849352392161111 +255 8.949 5464249230405811 +426 7.796
3167939147662997 −17 0.537 5539428831517831 +230 4.152
3383577137448533 +331 9.783 5592905052127597 +353 6.312
3411159925463651 +176 5.160 5625021395769599 −413 7.342
3544715971857451 +127 3.583 5683778474515027 +332 5.841
3660747680296367 −211 5.764 5755502459289463 +476 8.270
3690728733648797 −334 9.050 6227907715670981 −379 6.086
3692386431182551 +277 7.502 6517506365514181 +58 0.890
6521780305210439 −595 9.123

Table 5: Primes p < 9.7 × 1014 for which 3p−1 ≡ 1 + Ap (mod p2), with |A/p| < 10−13.
(Values of |A/p| are given in multiples of 10−14.)

p A |A/p|
1006003 0 0.0

39433103646379 −1 2.536
61629351935149 +2 3.245

191293826264479 +19 9.932
229887238986217 +11 4.785
431096201990017 +12 2.784
481589141680567 +13 2.699
566967768385507 +12 2.117
631564776981199 −59 9.342
638096726480497 +40 6.269
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Table 6: Primes p < 9.7 × 1014 for which 5p−1 ≡ 1 + Ap (mod p2), with |A/p| < 10−13.
(Values of |A/p| are given in multiples of 10−14.)

p A |A/p|
53471161 0 0.0

1645333507 0 0.0
6692367337 0 0.0

188748146801 0 0.0
319072335276077 +2 0.627
419207873154803 +26 6.202
817486743201059 −59 7.21724

Table 7: Primes p < 9.7 × 1014 for which 7p−1 ≡ 1 + Ap (mod p2), with |A/p| < 10−13.
(Values of |A/p| are given in multiples of 10−14.)

p A |A/p|
87121568306639 +8 9.1826

Table 8: New primes for which Fp−( p

5
) ≡ Ap (mod p2) satisfies |A| < 100 (mod p2) (for

examples with p < 2 × 1014, see [14]).

p A
267927950960309 −9
276225896955847 6
299920665662731 −49
321208072276457 −98
331961404795379 −98
399729951985657 −38
481154641312217 31
548865911671993 −92
549413206041731 62
585297174492313 11
635696842671829 52
732698387434649 −75
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