JIPAM logo: Home Link
Home Editors Submissions Reviews Volumes RGMIA About Us

  Volume 6, Issue 2, Article 54
Strongly Nonlinear Elliptic Unilateral Problems in Orlicz Space and $L^1$ Data

    Authors: L. Aharouch, M. Rhoudaf,  
    Keywords: Orlicz Sobolev spaces, Boundary value problems, Truncations, Unilateral problems.  
    Date Received: 21/12/04  
    Date Accepted: 06/04/05  
    Subject Codes:


    Editors: Alberto Fiorenza,  

In this paper, we shall be concerned with the existence result of Unilateral problem associated to the equations of the form,

$displaystyle Au + g(x, u, nabla u) = f, $
where $ A$ is a Leray-Lions operator from its domain $ D(A)subset W_0^{1}L_M(Omega)$ into $ W^{-1}E_{overline M}(Omega)$. On the nonlinear lower order term $ g(x,u,nabla u)$, we assume that it is a Carathéodory function having natural growth with respect to $ vertnabla uvert$, and satisfies the sign condition. The right hand side $ f$ belongs to $ L^1(Omega)$.

  Download Screen PDF
  Download Print PDF
  Send this article to a friend
  Print this page

      search [advanced search] copyright 2003 terms and conditions login