GENERALIZED SEIBERG-WITTEN EQUATIONS ON A RIEMANN SURFACE

RUKMINI DEY AND VARUN THAKRE

Communicated by Vasil V. Tsanov

Abstract. In this paper we consider twice-dimensionally reduced, generalized Seiberg-Witten (S-W) equations, defined on a compact Riemann surface. A novel feature of the reduction technique is that the resulting equations produce an extra “Higgs field”. Under suitable regularity assumptions, we show that the moduli space of gauge-equivalent classes of solutions to the reduced equations, is a smooth Kähler manifold and construct a pre-quantum line bundle over the moduli space of solutions.

MSC: Primary 53C26, 53D50

Keywords: Dimensional reduction, geometric quantization, Higgs field, hyperKähler manifolds, Seiberg-Witten equations

Contents

1 Introduction 48

2 Definitions and Notations 49
 2.1 Generalized Seiberg-Witten on \mathbb{R}^4 50

3 Dimensional Reduction 51
 3.1 Generalized Seiberg-Witten on a Riemann Surface 54

4 Moduli Space 55
 4.1 Abstract Setup 55
 4.2 Linearized Operator 56
 4.3 Transversality 57
 4.4 Kähler Structure on Moduli Space 59

5 Pre-Quantum Line-Bundle on the Moduli Space Under the Assumption of Integrality Condition 63

6 Summary and Discussion 65

References 65