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Abstract
Earnest and Khosravani, Iwabuchi, and Kim and Park recently gave a complete classification

of the universal binary Hermitian forms. We give a unified proof of the universalities of

these Hermitian forms, relying upon Ramanujan’s list of universal quadratic forms and the

Bhargava-Hanke 290-Theorem. Our methods bypass the ad hoc arguments required in the

original classification.

1. Introduction

The question of representing integers by quadratic forms dates back to the time of
Fermat, whose Two Squares Theorem solved the question of which primes could be
represented by the form x2 + y2 (see [6, p. 219]). This theorem was later generalized
by Lagrange, who showed in his Four Squares Theorem [11] that every positive integer
can be written as a sum of four squares of integers.

Lagrange’s theorem has led to the modern study of universal forms, those forms
which represent all positive integers. In the first half of the twentieth century, Ra-
manujan [13] identified the universal positive-definite classically integral quaternary
diagonal quadratic forms, up to equivalence. Maass [12] and Chan, Kim, and Ragha-
van [3] gave analogous classification results leading to the full classification of the
positive-definite classically integral ternary quadratic forms which are universal over
real quadratic fields.

Motivated by the work on universal quadratic forms over real fields, Earnest and
Khosravani [5] sought a classification of universal binary Hermitian forms over imagi-
nary quadratic fields. Recently, Iwabuchi [7] and Kim and Park [10] finished Earnest
and Khosravani’s program, completing the list of universal binary Hermitian forms.

A different direction of recent research has focused on the search for universality
criteria, simple tests which characterize the universality of positive-definite quadratic
forms. The earliest-discovered result in this vein is Conway and Schneeberger’s sur-
prising 15-Theorem (see [4] for statement and history and [1] for a proof):

15-Theorem.A positive-definite classically integral quadratic form is universal if and
only if it represents the nine “critical numbers”

{1, 2, 3, 5, 6, 7, 10, 14, 15}.
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More recently, Bhargava and Hanke [2] showed an analogous criterion for the
universality of positive-definite nonclassically integral quadratic forms:

290-Theorem. A positive-definite nonclassically integral quadratic form is universal
if and only if it represents the numbers

S290 = {1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26,
29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, 290}.

While the criterion theorems reduce testing a form’s universality to a simple com-
putation, they have rarely been applied in practice. The reason for this somewhat
curious fact is that the proofs of both the 15- and 290-Theorems rely on independent
identification of many universal forms of low rank, called the universal escalators.

The results on Hermitian forms, however, give us a chance to greatly simplify prior
work through an application of the 290-Theorem. Specifically, we apply the 290-
Theorem to reduce the most difficult universality verifications in the classification of
universal binary Hermitian forms to simple, finite computations.

2. Preliminaries

We let E be an imaginary quadratic field over Q and let m > 0 be a squarefree
integer for which E = Q(

√
−m). We denote the Q-involution of E by and the ring

of integers of E by OE .
We let V/E be an n-dimensional Hermitian space over E with nondegenerate

Hermitian form H. As shown by Jacobson [8], we may consider (V,H) as a 2n-
dimensional quadratic space (Ṽ , B) with the bilinear form B defined by the trace
map

B(v, w) =
1
2
TrE/Q(H(v, w)).

An OE-lattice L is a finitely generated OE-module on the Hermitian space (V,H).
We consider only positive-definite integral OE-lattices L, that is, those for which
H(v, w) ∈ OE for all v, w ∈ L and H(v, v) > 0 for all L $ v %= 0. If an OE-lattice
L is of the form L = L1 ⊕ L2 for sublattices L1, L2 of L with H(v1, v2) = 0 for all
v1 ∈ L1 and v2 ∈ L2, then we write L ∼= L1⊥L2.

When E has class number 1, the ring OE is a principal ideal domain whereby every
OE-lattice L is free. In this case, we may think of the Hermitian form H acting on
L as a function f : On

E → Z defined by

f(x1, . . . , xn) = H

(
n∑

i=1

xivi,
n∑

i=1

xivi

)
=

n∑

i=1

n∑

j=1

H(vi, vj)xix̄j
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for some suitable basis {vi}n
i=1 of L. If the basis {vi}n

i=1 is orthogonal, we write
L ∼= 〈H(v1), . . . ,H(vn)〉. (For example, the form xx̄+2yȳ is associated to the lattice
〈1, 2〉.)

Similarly, we may associate a quadratic lattice L̃ with every Hermitian OE-lattice
L. The ring OE has a basis {1,ωm} as a Z-module, where

ωm =

{
1+
√
−m

2 , m ≡ 3 mod 4,√
−m, otherwise.

Then, f̃(x1, y1, . . . , xn, yn) = f(x1 + ωmy1, . . . , xn + ωmyn) is a quadratic form in 2n
variables corresponding to the lattice L̃. From this construction, it is clear that the
Hermitian form f is universal if and only if the quadratic form f̃ is. We write ∼ to
denote the correspondence between a Hermitian lattice and its associated quadratic
form.

3. Classification of Universal Hermitian Forms

Earnest and Khosravani [5], Iwabuchi [7], and Kim and Park [10] identified all po-
tentially universal Hermitian forms over imaginary quadratic fields. This “screening
process” is the more straightforward part of the classification, relying on a uniform
computational method (see [5]).

The universality of the candidates identified was then shown by a variety of meth-
ods. Indeed, a total of eight different approaches were used. Six of these methods were
“ad hoc” arguments, each an intricate method developed to prove the universality of
an individual Hermitian form.

We give a unified proof of the universalities of the forms in the classification,
relying upon Ramanujan’s list of universal forms [13] and the 290-Theorem [2]. The
universalities of the twenty-five universal binary Hermitian forms follow directly from
our methods.
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Main Theorem. Up to equivalence, the integral positive-definite universal binary
Hermitian lattices in imaginary quadratic fields are exactly the lattices in (1):

Q(
√
−m) universal binary lattices

Q(
√
−1) 〈1, 1〉 , 〈1, 2〉 , 〈1, 3〉,

Q(
√
−2) 〈1, 1〉 , 〈1, 2〉 , 〈1, 3〉 , 〈1, 4〉 , 〈1, 5〉,

Q(
√
−3) 〈1, 1〉 , 〈1, 2〉,

Q(
√
−5) 〈1, 2〉 , 〈1〉⊥

(
2 −1 + ω5

−1 + ω̄5 3

)
,

Q(
√
−6) 〈1〉⊥

(
2 ω6

ω̄6 3

)
,

Q(
√
−7) 〈1, 1〉 , 〈1, 2〉 , 〈1, 3〉,

Q(
√
−10) 〈1〉⊥

(
2 ω10

ω̄10 5

)
,

Q(
√
−11) 〈1, 1〉 , 〈1, 2〉,

Q(
√
−15) 〈1〉⊥

(
2 ω15

ω̄15 2

)
,

Q(
√
−19) 〈1, 2〉,

Q(
√
−23) 〈1〉⊥

(
2 ω23

ω̄23 3

)
, 〈1〉⊥

(
2 −1 + ω23

−1 + ω̄23 3

)
,

Q(
√
−31) 〈1〉⊥

(
2 ω31

ω̄31 4

)
, 〈1〉⊥

(
2 −1 + ω31

−1 + ω̄31 4

)
.

(1)

Proof. Earnest and Khosravani [5], Iwabuchi [7], and Kim and Park [10] showed that
no binary Hermitian forms not in the list (1) can be universal over an imaginary
quadratic field E. Therefore, we must only show the universality of each of these
candidate forms.

First, we identify the diagonal lattices in the list (1) which correspond to diagonal
quaternary quadratic forms:

〈1, 1〉 in Q(
√
−1) ∼ w2 + x2 + y2 + z2,

〈1, 1〉 in Q(
√
−2) ∼ w2 + x2 + 2y2 + 2z2,

〈1, 2〉 in Q(
√
−1) ∼ w2 + x2 + 2y2 + 2z2,

〈1, 2〉 in Q(
√
−2) ∼ w2 + 2x2 + 2y2 + 4z2,

〈1, 2〉 in Q(
√
−5) ∼ w2 + 2x2 + 5y2 + 10z2,

〈1, 3〉 in Q(
√
−1) ∼ w2 + x2 + 3y2 + 3z2,

〈1, 3〉 in Q(
√
−2) ∼ w2 + 3x2 + 3y2 + 6z2,

〈1, 4〉 in Q(
√
−2) ∼ w2 + 2x2 + 4y2 + 8z2,

〈1, 5〉 in Q(
√
−2) ∼ w2 + 2x2 + 5y2 + 10z2.

(2)

The universality of each of the forms on the right-hand side of (2) was shown by
Ramanujan [13]. Thus, we have the universality of the Hermitian forms on the left-
hand side of (2) immediately.
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This leaves only eight other diagonal Hermitian lattices in (1),

〈1, 1〉 in Q(
√
−3) ∼ w2 + wx + x2 + y2 + yz + z2,

〈1, 1〉 in Q(
√
−7) ∼ w2 + wx + 2x2 + y2 + yz + 2z2,

〈1, 1〉 in Q(
√
−11) ∼ w2 + wx + 3x2 + y2 + yz + 3z2,

〈1, 2〉 in Q(
√
−3) ∼ w2 + wx + x2 + 2y2 + 2yz + 2z2,

〈1, 2〉 in Q(
√
−7) ∼ w2 + wx + 2x2 + 2y2 + 2yz + 4z2,

〈1, 2〉 in Q(
√
−11) ∼ w2 + wx + 3x2 + 2y2 + 2yz + 6z2,

〈1, 2〉 in Q(
√
−19) ∼ w2 + wx + 5x2 + 2y2 + 2yz + 10z2,

〈1, 3〉 in Q(
√
−7) ∼ w2 + wx + 2x2 + 3y2 + 3yz + 6z2.

(3)

We may invoke the 290-Theorem to show the universality of the eight quadratic
forms in (3); the check that each of these forms represents all of S290 is an easy
computation. It then follows directly that the eight Hermitian forms in (3) are all
universal.

Now, we turn to the non-diagonal Hermitian lattices in (1). These are the remain-
ing eight lattices,

〈1〉⊥
(

2 −1 + ω5

−1 + ω̄5 3

)
in Q(

√
−5) ∼ w2 + 2x2 + 2xy + 3y2 + 5z2,

〈1〉⊥
(

2 ω6

ω̄6 3

)
in Q(

√
−6) ∼ w2 + 2x2 + 3y2 + 6z2,

〈1〉⊥
(

2 ω10

ω̄10 5

)
in Q(

√
−10) ∼ w2 + 2x2 + 3y2 + 10z2,

〈1〉⊥
(

2 ω15

ω̄15 2

)
in Q(

√
−15) ∼ w2 + 2x2 + xy + 2y2 + wz + 4z2,

〈1〉⊥
(

2 ω23

ω̄23 3

)
in Q(

√
−23) ∼ w2 + 2x2 + xy + 3y2 + wz + 6z2,

〈1〉⊥
(

2 −1 + ω23

−1 + ω̄23 3

)
in Q(

√
−23) ∼ w2 + 2x2 + xy + 3y2 + wz + 6z2,

〈1〉⊥
(

2 ω31

ω̄31 4

)
in Q(

√
−31) ∼ w2 + 2x2 + xy + 4y2 + wz + 8z2,

〈1〉⊥
(

2 −1 + ω31

−1 + ω̄31 4

)
in Q(

√
−31) ∼ w2 + 2x2 + xy + 4y2 + wz + 8z2.

(4)

Now, all of the diagonal quadratic forms in (4) are found in the list of universal forms
obtained by Ramanujan [13]. Furthermore, the universalities of the non-diagonal
quadratic forms in (4) follow from the 290-Theorem. It then follows immediately
that all the Hermitian forms in (4) are universal. !

4. Remarks

Kim, Kim, and Park [9] have recently announced a criterion which completely char-
acterizes the universality of Hermitian forms.
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15-Theorem for Hermitian Lattices. A positive-definite integral Hermitian form
is universal if and only if it represents the ten integers {1, 2, 3, 5, 6, 7, 10, 13, 14, 15}.

Unfortunately, the proof of this result cites the original proof of the classification of
universal binary Hermitian forms. Consequently, Kim, Kim, and Park’s 15-Theorem
for Hermitian Lattices cannot give a direct, unified proof of our Main Theorem.

Kim, Kim, and Park note that the 290-Theorem can be used to simplify some
of the arguments in their proof of the 15-Theorem for Hermitian Lattices. Such
simplifications would take the same form as those we have presented here to unify
the classification of universal binary Hermitian forms.

Acknowledgements. The author is grateful to Zachary Abel and an anonymous
referee for their helpful comments and suggestions on the work and on earlier drafts
of this article.
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[12] H. Maass, Über die Darstellung total positiver Zahlen des Körpers R(
√

5) als Summe von drei
Quadraten, Abh. Math. Sem. Hamburg 14 (1941), 185–191.



INTEGERS: 9 (2009) 15

[13] S. Ramanujan, On the expression of a number in the form ax2 + by2 + cz2 + du2, Proc.
Cambridge Phil. Soc. 19 (1917), 11–21.


