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Abstract

The work in this paper is inspired and motivated by some work of Nathanson. We count
the number of relatively prime subsets and the number of relatively prime subsets having
some fixed cardinality that are in {m,m+1, . . . , n}. We also count the number of nonempty
subsets of {m,m+1, . . . , n} whose gcd is relatively prime to n and the number of nonempty
subsets {m,m+1, . . . , n} having some fixed cardinality and whose gcd is relatively prime to
n. Our work generalizes the results on relatively prime subsets of {1, 2, . . . , n} and on phi
functions for sets {1, 2, . . . , n}. Our proofs use an extension of the Möbius inversion formula
to functions of several variables.

1. Preliminaries

We say that a set of integers A is relatively prime if gcd(A) = 1. Clearly, if 1 ∈ A, then A
is relatively prime. Moreover, if gcd(A) = d, then the set 1

dA =
{

a
d : a ∈ A

}
is relatively

prime. Throughout the paper, [x], the floor of x, satisfies the following basic identity

[x

d

]
=

[
[x]

d

]
for all real x and positive integer d. (1)

Let m, n, and k denote positive integers.

Definition 1. An arithmetical function of k variables is a complex-valued function with do-
main N×({0}∪N)k−1. A generalized arithmetical function of k variables is a complex-valued
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function G with domain (0,∞)k such that G(y1, y2, . . . , yk−1, x) = 0 whenever 0 < x < 1. An
arithmetical function of one variable is simply called arithmetical and a generalized arith-
metical function of one variable is simply said to be generalized arithmetical.

For example, the Möbius function µ, the unit function u(n) = 1 for all n ∈ N, and the
identity function

I(n) =

[
1

n

]
=

{
1 if n = 1

0 if n > 0

are arithmetical. If α and β are two arithmetical functions, then their Dirichlet product is

(α ∗ β)(n) =
∑

d|n

α(d)β(
n

d
).

The Dirichlet product is commutative, associative, and has the function I as an identity, i.e.,

α ∗ I = α for all arithmetical α.

An arithmetical function α is said to have an inverse α−1 if α ∗ α−1 = I. For instance, we
have

µ−1 = u (2)

since

(µ ∗ u)(n) =
∑

d|n

µ(d)u
(n

d

)
=

∑

d|n

µ(d) =

{
1, if n = 1,

0, if n > 1
= I(n).

2. Möbius Inversion Formulas for Multivariable Functions

In this section we extend generalized convolutions and the Möbius inversion formula to func-
tions of more than one variable. The inspiration for the results in this section came from
the work of Apostol in [1] on convolutions and inversion formulas for arithmetical functions.

Definition 2. Let α be an arithmetical function, F an arithmetical function of k variables,
and G a generalized arithmetical function of k variables. Then we define two arithmetical
functions in k variables α • F and α & F and a generalized arithmetical function α ◦ G as
follows:

(α • F )(m,n1, n2, . . . , nk−1) =
∑

d|m

α(d)F
(m

d
,
[n1

d

]
,
[n2

d

]
, . . . ,

[nk−1

d

])
.

(α & F )(n1, n2, . . . , nk) =
∑

d| gcd(n1,n2,...,nk)

α(d)F
(n1

d
,
n2

d
, . . . ,

nk

d

)
.

(α ◦G)(y1, y2, . . . , yk−1, x) =
∑

n≤x

α(x)G
(y1

n
,
y2

n
, . . . ,

yk−1

n
,
x

n

)
.
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The following result states that the function I behaves as a left identity for the classes of
arithmetical functions and generalized arithmetical functions.

Proposition 1. If F is an arithmetical function of k variables and G is a generalized
arithmetical function of k variables, then the following identities hold.

(a) I • F = I & F = F.

(b) I ◦G = G.

Proof. (a) We have

(I•F )(m,n1, n2 . . . , nk−1)=
∑

d|m

I(d)F
(m

d
,
[n1

d

]
,
[n2

d

]
, . . . ,

[nk−1

d

])
=F (m,n1, n2 . . . , nk−1)

and

(I & F )(n1, n2 . . . , nk) =
∑

d| gcd(n1,n2,...,nk)

I(d)F
(n1

d
,
n2

d
, . . . ,

nk

d

)
= F (n1, n2 . . . , nk).

(b) Similar to (a).

Theorem 1. If α and β are arithmetical functions, F is an arithmetical function of k
variables, and G is a generalized arithmetical function with k variables, then the following
identities are true.

(a) α • (β • F ) = (α ∗ β) • F.

(b) α ◦ (β ◦G) = (α ∗ β) ◦G.

(c) α & (β & F ) = (α ∗ β) & F.

Proof. (a) We only prove the theorem for functions in two variables since the proof can be
adapted easily for more variables. The following identities are true:

(α • (β • F )) (m,n) =
∑

d|m

α(d)(β • F )
(m

d
,
[n

d

])

=
∑

d|m

α(d)
∑

e| m
d

β(e)F

(
m

de
,

[
[n
d ]

e

])

=
∑

d|m

α(d)
∑

e| m
d

β(e)F
(m

de
,
[ n

de

])

=
∑

c|m




∑

d|c

α(d)β(
c

d
)



F
(m

c
,
[n

c

])

=
∑

c|m

(α ∗ β)(c)F
(m

c
,
[n

c

])

= ((α ∗ β) • F ) (m,n),
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where the third identity follows by Equation (1).
(b) This part is obtained similarly as part (a).
(c) We only prove the result for functions in two variables since the proof can be adapted
easily for more variables. The following identities are true:

(α & (β & F )) (m,n) =
∑

d| gcd(m,n)

α(d)(β & F )
(m

d
,
n

d

)

=
∑

d| gcd(m,n)

α(d)
∑

e| gcd(m
d , n

d )

β(e)F
(m

de
,

n

de

)

=
∑

c| gcd(m,n)




∑

d|c

α(d)β
( c

d

)


F
(m

c
,
n

c

)

=
∑

c| gcd(m,n)

(α ∗ β)(c)F
(m

c
,
n

c

)

=
(
(α ∗ β) & F

)
(m,n).

We now give the following variants of the Möbius inversion formula and note that part (b)
is a generalization for [1, Theorem 2.22]. For simplicity we let

(m, n̄) = (m,n1, n2, . . . , nk−1),
(m

d
,
[ n̄

d

])
=

(m

d
,
[n1

d

]
,
[n2

d

]
, . . . ,

[nk−1

d

])
,

(ȳ, x) = (y1, y2, . . . , yk−1, x), and
( ȳ

n
,
x

n

)
=

(y1

n
,
y2

n
, . . . ,

yk−1

n
,
x

n

)
.

Theorem 2. Let α be an arithmetical function that has an inverse α−1.
(a) If F and G are arithmetical of k variables, then

G(m, n̄) =
∑

d|m

α(d)F
(m

d
,
[ n̄

d

])
if and only if F (m, n̄) =

∑

d|m

α−1(d)G
(m

d
,
[ n̄

d

])

and
G(m, n̄) =

∑

d|m

F
(m

d
,
[ n̄

d

])
if and only if F (m, n̄) =

∑

d|m

µ(d)G
(m

d
,
[ n̄

d

])
.

(b) If F and G are generalized arithmetical of k variables, then

G(ȳ, x) =
∑

n≤x

α(n)F
( ȳ

n
,
x

n

)
if and only if F (ȳ, x) =

∑

n≤x

α−1(n)G
( ȳ

n
,
x

n

)

and
G(ȳ, x) =

∑

n≤x

F
( ȳ

n
,
x

n

)
if and only if F (ȳ, x) =

∑

n≤x

µ(n)G
( ȳ

n
,
x

n

)
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(c) If F and G are arithmetical of k variables, then we have the following two equivalences:

G(n1, n2, . . . , nk) =
∑

d| gcd(n1,n2,...,nk)

α(d)F
(n1

d
,
n2

d
, . . . ,

nk

d

)
if and only if

F (n1, n2, . . . , nk) =
∑

d| gcd(n1,n2,...,nk)

α−1(d)G
(n1

d
,
n2

d
, . . . ,

nk

d

)

and
G(n1, n2, . . . , nk) =

∑

d| gcd(n1,n2,...,nk)

F
(n1

d
,
n2

d
, . . . ,

nk

d

)
if and only if

F (n1, n2, . . . , nk) =
∑

d| gcd(n1,n2,...,nk)

µ(d)G
(n1

d
,
n2

d
, . . . ,

nk

d

)
.

Proof. (a) Assume that G = α •F . Then by virtue of Theorem 1 and Proposition 1 we find
that

α−1 • G = α−1 • (α • F ) = (α−1 ∗ α) • F = I • F = F.

The implication from right to left follows similarly. The second equivalence of part (a) is a
special case of the first one since µ−1 = u by Equation (2).
Parts (b) and (c) are obtained similarly.

3. Relatively Prime Subsets

Definition 3. Let

g(m,n) = #{A ⊆ {m, . . . , n} : m ∈ A and gcd(A) = 1},

gk(m,n) = #{A ⊆ {m, . . . , n} : m ∈ A, #A = k, and gcd(A) = 1},
f(m,n) = #{A ⊆ {m, . . . , n} : A )= ∅ and gcd(A) = 1}, and

fk(m,n) = #{A ⊆ {m, . . . , n} : #A = k and gcd(A) = 1}.
Note that the functions g, gk, and fk count sets A ⊆ {m, . . . , n} that are nonempty because
of the condition m ∈ A in the definitions of g and gk and the condition #A = k in the
definition of fk.
In [2], f(n) = f(1, n) and fk(n) = fk(1, n) and by [2, Theorem 1] we have

f(1, n) =
n∑

d=1

µ(d)(2[n
d ] − 1) and fk(1, n) =

n∑

d=1

µ(d)

(
[n
d ]

k

)
. (3)

Lemma 1. If n ≥ m, then we have the following two identities.

(a) g(m,n) =
∑

d|m

µ(d)2[n
d ]−m

d .
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(b) gk(m,n) =
∑

d|m

µ(d)

(
[n
d ]− m

d

k − 1

)
.

Proof. (a) Let P(m,n) denote the set of subsets of {m, . . . , n} containing m. Clearly,
#P(m,n) = 2n−m. It is also clear that the set P(m,n) can be partitioned using the relation
of having the same gcd. Moreover, the mapping A -→ 1

dA is a one-to-one correspondence
between the subsets of P(m,n) having gcd = d (dividing m) and the relatively prime subsets
of {m

d , . . . , [n
d ]} which contain m

d . Then we find the following identity

2n−m =
∑

d|m

g
(m

d
,
[n

d

])
,

which by Theorem 2(a) is equivalent to

g(m,n) =
∑

d|m

µ(d)2[n
d ]−m

d .

(b) Noting that the correspondence A -→ 1
dA defined above preserves the cardinality and

using a similar argument as in part (a), we find the following identity
(

n−m

k − 1

)
=

∑

d|m

gk

(m

d
,
[n

d

])

which by Theorem 2(a) is equivalent to gk(m,n) =
∑

d|m

µ(d)

(
[n
d ]− m

d

k − 1

)
.

Theorem 3. If n ≥ m, then the following two identities are true.

(a) f(m,n) =
n∑

d=1

µ(d)(2[n
d ] − 1)−

m−1∑

i=1

∑

d|i

µ(d)2[n
d ]− i

d .

(b) fk(m,n) =
n∑

d=1

µ(d)

(
[n
d ]

k

)
−

m−1∑

i=1

∑

d|i

µ(d)

(
[n
d ]− i

d

k − 1

)
.

Proof. (a) Repeatedly applying Lemma 1 together with Equation (3) yield the following
identities:

f(m,n) = f(m− 1, n)− g(m− 1, n)

= f(m− 2, n)− (g(m− 2, n) + g(m− 1, n))

= f(1, n)−
m−1∑

i=1

g(i, n)

=
n∑

d=1

µ(d)(2[n
d ] − 1)−

m−1∑

i=1

∑

d|i

µ(d)2[n
d ]− i

d .

(b) Similar to (a).
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4. Phi Functions

Definition 4. Let

Ψ(m,n) = #{A ⊆ {m, . . . , n} : m ∈ A and gcd(A ∪ {n}) = 1},

Ψk(m,n) = #{A ⊆ {m, . . . , n} : m ∈ A, #A = k, and gcd(A ∪ {n}) = 1},

Φ(m,n) = #{A ⊆ {m, . . . , n} : A )= ∅ and gcd(A ∪ {n}) = 1}, and

Φk(m,n) = #{A ⊆ {m, . . . , n} : #A = k and gcd(A ∪ {n}) = 1}.

Note that the four functions in this definition count sets that are nonempty.
In [2], Φ(n) = Φ(1, n) and Φk(n) = Φk(1, n) and by [2, Theorem 3] we have

Φ(1, n) =
∑

d|n

µ(d)2n/d and Φk(1, n) =
∑

d|n

µ(d)

(
n/d

k

)
. (4)

Lemma 2. If n ≥ m, then we have the following two identities.

(a) Ψ(m,n) =
∑

d| gcd(m,n)

µ(d)2
n−m

d .

(b) Ψk(m,n) =
∑

d| gcd(m,n)

µ(d)

( n−m
d

k − 1

)
.

Proof. (a) Let P(m,n) be as in the proof of Lemma and let

P(m,n, d) = {A ⊆ {m, . . . , n} : m ∈ A and gcd(A ∪ {n}) = d}.

We know that the set P(m,n), with 2n−m elements, can be partitioned using the equivalence
relation “≡” for having the same gcd, that is:

A ≡ B if and only if A,B ∈ P(m,n, d) for some d| gcd(m,n).

Furthermore, the mapping A -→ 1
dA is a one-to-one correspondence between P(m,n, d) and

the set of subsets B of {m/d, . . . , n/d} such that m/d ∈ B and gcd(B ∪ {n/d}) = 1. Then
we have that #P(m,n, d) = Ψ

(
m
d , n

d

)
. Thus, we find the following identity:

2n−m =
∑

d| gcd(m,n)

#P(m,n, d) =
∑

d| gcd(m,n)

Ψ
(m

d
,
n

d

)
,

which by Theorem 2(c) is equivalent to

Ψ(m,n) =
∑

d| gcd(m,n)

µ(d)2
n−m

d .
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(b) Noting that the correspondence A -→ 1
dA defined above preserves the cardinality and

using an argument similar to the one in part (a), we obtain the following identity
(

n−m

k − 1

)
=

∑

d| gcd(m,n)

Ψk

(m

d
,
n

d

)

which by Theorem 2(c) is equivalent to

Ψk(m,n) =
∑

d| gcd(m,n)

µ(d)

( n−m
d

k − 1

)
.

Theorem 4. If n ≥ m, then the following two identities are true.

(a) Φ(m,n) =
∑

d|n

µ(d)2
n
d −

m−1∑

i=1

∑

d| gcd(i,n)

µ(d)2
n−i

d .

(b) Φk(m,n) =
∑

d|n

µ(d)

(
n/d

k

)
−

m−1∑

i=1

∑

d| gcd(i,n)

µ(d)

( n−i
d

k − 1

)
.

Proof. (a) Repeatedly applying Lemma 2(a) together with Equation (4) yield the following
identities:

Φ(m,n) = Φ(m− 1, n)−Ψ(m− 1, n)

= Φ(m− 2, n)− (Ψ(m− 2, n) + Ψ(m− 1, n))

= Φ(1, n)−
m−1∑

i=1

Ψ(i, n)

=
∑

d|n

µ(d)2
n
d −

m−1∑

i=1

∑

d| gcd(i,n)

µ(d)2
n−i

d .

(b) Similar to (a).
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