Drift Estimation From \(\sim \rho \)-Mixing Sequences

MOUNIR ARFI
Dept. of Mathematics, University of Bahrain, Kingdom of Bahrain
e-mail : m-arfi@hotmail.com

Abstract

we obtain the almost sure convergence for a kernel estimate of the drift coefficient in the diffusion equation for \(\sim \rho \) mixing sequences over a sequence of compact sets which increases to \(\mathbb{R} \) when \(n \) approaches infinity.

Keywords: Almost sure convergence, Diffusion equation, Drift coefficient, Kernel estimate, \(\sim \rho \)-mixing sequences.

1 Introduction

Let \(X_t \) be a diffusion solution of the stochastic differential equation:

\[
dX_t = \mu(X_t)dt + \sigma(X_t)dW_t \quad t \in \mathbb{R}^+
\]

(\(W_t; t \in \mathbb{R}^+ \)) is a standard Brownian motion; \(\mu \) and \(\sigma \) are two Lipschitz and unknown functions of class \(C^1 \) with \(\sigma \) strictly positive. We know that under Lipschitz conditions on \(\mu \) and \(\sigma \), there exists for any given initial \(X_0 \) independent of \((W_t; t \geq 0) \) a unique, with probability one, solution to the equation above and this solution is a measurable Markov process (Wong [11]).

This unique solution must have a stationary transition density, say \(f_{X_t|X_0}(.) \) satisfying the forward equation of Kolmogorov:

\[
\frac{\partial^2}{\partial x^2} \left(\frac{1}{2} \sigma^2(x)f_{X_t|X_0}(x) \right) - \frac{\partial}{\partial x} \left(\mu(x)f_{X_t|X_0}(x) \right) = \frac{\partial}{\partial t} f_{X_t|X_0}(x)
\]

with \(f_{X_t|X_0}(.) \) tending to a limiting density, say \(f(.) \) as \(t \) goes to infinity.
For simplicity, we shall suppose that the initial distribution of X_0 has density $f(.)$ so that $(X_t)_{t \geq 0}$ is a stationary process and we are interested in estimation of $\mu(x)$ for each $x \in S$ where S is the nonempty set $\{x \in \mathbb{R} / f(x) > 0\}$.

Moreover, under conditions of existence and uniqueness of the solution to the stochastic differential equation, the stationary diffusion X is ergodic (see Brown and Hewitt [7]).

This problem has been considered by several authors, among others Pham [10] gave a convergence in quadratic mean for the kernel estimate of the drift coefficient from the regression equation $E(X_{t+p}|X_t = .); p \geq 1$, Arfi [1] established the almost sure convergence when the observed process is ergodic, Arfi and Lecoutre [3] established the almost sure convergence for a kernel estimate of the diffusion coefficient, and lately, Arfi [2] studied the almost sure convergence for a kernel estimate of the drift coefficient when the observed process is mixing over a sequence of compact sets which increases to \mathbb{R}.

In this paper we give the almost sure convergence for the kernel estimate of the drift coefficient when the observed sequences are $\tilde{\rho}$-mixing over a sequence of compact sets C_n which increases to \mathbb{R} when $n \to \infty$.

Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space. Given the σ-algebras \mathcal{B} and \mathcal{R} in \mathcal{F}, let $\rho(\mathcal{B}, \mathcal{R}) = \sup \{\text{corr}(X, Y), X \in L_2(\mathcal{B}), Y \in L_2(\mathcal{R})\}$ where $\text{corr}(X, Y) = (EXY - EXEY)/\sqrt{\text{var}X \text{var}Y}$.

Bradley [5] introduced the following coefficients of dependence $\tilde{\rho}(k) = \sup \{\rho(\mathcal{F}_S, \mathcal{F}_T), k \geq 0$ where the supermum is taken over all finite subsets $S, T \subset N$ such that $\text{dist}(S, T) \geq k$.

Obviously,

$$0 \leq \tilde{\rho}(k + 1) \leq \tilde{\rho}(k) \leq 1, \quad k \geq 0,$$

and $\tilde{\rho}(0) = 1$.

Definition

A random variable sequence $(X_t, t \geq 1)$ is said to be $\tilde{\rho}$-mixing sequence if there exists $k \in N$ such that $\tilde{\rho}(k) \downarrow 1$.

Without loss of generality we may assume that the observed process is such that $\tilde{\rho}(k) \downarrow 1$ (see Bryc and Smolenski [8]).

2. The Model, the Notation, Some definitions

Let \(d \) be positive and fixed and \(n \in \mathbb{N} \), the Markov observation \((X_{jd} ; 0 \leq j \leq n - 1)\) permit to write:

\[
X_{jd+d} - X_{jd} = \mu_d(X_{jd}) + \sigma_d(X_{jd}) Y_{jd+d}
\]

where \(\mu_d(X_j) = E(X_{j+d} - X_j \mid X_j) \) and \(\sigma_d^2(X_j) = V(X_{j+d} \mid X_j) \) are supposed to exist and define discrete versions of \(\mu \) and \(\sigma^2 \), \((Y_j)\) being a stationary Gaussian process such that:

\[
E(Y_{j+d} \mid X_s; s \leq j) = 0 \quad \text{and} \quad E(Y_{j+d}^2 \mid X_s; s \leq j) = 1.
\]

A natural estimator of \(\mu_d \) is:

\[
\mu_{d,n}(x) = \frac{\sum_{j=0}^{n-1} K\left(\frac{x - X_{jd}}{h_n}\right) (X_{jd+d} - X_{jd})}{\sum_{j=0}^{n-1} K\left(\frac{x - X_{jd}}{h_n}\right)} \quad \forall \ x \in S
\]

where \((h_n)\) is a positive sequence of real numbers such that \(h_n \to 0 \), and \(nh_n \to \infty \) when \(n \to \infty \), and \(K \) a Parzen Rosenblatt kernel type, that is a bounded function satisfying \(\int K(x)dx = 1 \) and \(\lim |x|K(x) = 0 \) when \(|x| \to \infty \), in addition we will assume it to be strictly positive and with bounded variation.

The almost sure convergence of \(\mu_{d,n} \) to \(\mu_d \) is established under the \(\hat{\rho} \)-mixing condition and using the fact that:

\[
\mu(x) = \lim_{d \to 0} d^{-1} E(X_{j+d} - X_j \mid X_j = x)
\]

we deduce an estimate \((\mu_{d,n}/d) \) of \(\mu \), if \(d = d(n) \) such that \(N = nd \to \infty \), which is a necessary condition for both \(Nh_n \to \infty \) and the \(\hat{\rho} \)-mixing condition.

We make the following assumptions:

(A.1) The process \((X_{jd})\), \(j \in \mathbb{N} \) is strictly stationary and \(\hat{\rho} \)-mixing.

(A.2) The initial random variable \(X_0 \) is of second order : \(E(X_0^2) < \infty \).

(A.3) The kernel \(K \) is Lipschitz of order \(\gamma_1 \).

(A.4) The functions \(\mu(.) \) and \(\sigma(.) \) are Borel measurable on \(\mathbb{R} \) satisfying for \(x, y \in \mathbb{R} \) the uniform Lipschitz condition:

\[
|\mu(x) - \mu(y)| \leq c |x - y|
\]

\[
|\sigma(x) - \sigma(y)| \leq c |x - y|
\]
and the linear growth condition

\[
|\mu(x)| \leq c\sqrt{1 + x^2} \\
|\sigma(x)| \leq c\sqrt{1 + x^2}
\]

where \(c\) is a positive constant.

(A.5) \(\exists \Gamma < \infty, \ \forall x \in \mathbb{R} \ f(x) \leq \Gamma\)

and

\(\exists \gamma_n > 0, \ \forall x \in C_n \ f(x) \geq \gamma_n\).

where \(C_n\) is a sequence of compact sets such that \(C_n = \{x : ||x|| \leq c_n\}\) with \(c_n \to \infty\).

(A.6) The density \(f\) is twice differentiable and its derivatives are bounded.

3. Main Results

The main results of this paper are the following theorem and corollary.

Theorem

Suppose that \(h_n\) is a positive sequence of real numbers such that \(h_n = o(\gamma_n)\) that satisfying \(\lim_{n \to \infty} \frac{n^{1-\xi}h_n}{\log n} = \infty\) for some \(\xi \in [0, 1/2]\); and let \(K\) to be Lipschitz kernel with bounded variation; i.e. \(\int z^2 K(z)dz < \infty\), then under assumptions A1 - A6, and for a compact sets \(C_n\) we have

\[
\sup_{x \in C_n} |\mu_{d,n}(x) - \mu_d(x)| \longrightarrow 0, \ a.s. \ n \to \infty.
\]

Corollary Under assumptions of Theorem 1, if we choose \(h_n\) and \(d\) such that:

\(d \to 0, \ \lim_{n \to \infty} \frac{n^{1-\xi}dh_n}{\log n} = \infty, \ h_n = o(d),\)

then we have:

\[
\sup_{x \in C_n} \left| \frac{\mu_{d,n}(x)}{d} - \mu(x) \right| \longrightarrow 0, \ a.s. \ n \to \infty.
\]
Remark If we assume that the initial condition X_0 is independent of
$(W_j ; j \in \mathbb{R}^+)$ with density f, then a condition such as: for all $x \in \mathbb{R}$
$|\mu(x)| + \sigma(x) \leq c(1 + x^2)^{1/2}$ where c is a strictly positive constant,
implies that the process (X_j) is stationary (Wong [11]).

Remark As sequences c_n and h_n defined in the Theorem 1, we can choose
$c_n = O((\log n)^{1/\gamma})$ and $h_n = O(n^{-\tau})$ with $0 < \tau < 1$. On the other part, the
construction of the estimator requires a choice of K and h_n. If the choice of K
does not much influence the asymptotic behavior of $\mu_{d,n}$, on the contrary the
choice of h_n turns to be crucial for the estimator’s accuracy. One can employ
a cross-validation or plug-in method. In a forthcoming paper using simula-
tions, we give comparisons of the results between two methods of estimation.

4. Preliminary Results

We make use of the following decomposition:

$$
\mu_{d,n}(x) - \mu_d(x) = A_n(x) + B_n(x)
$$

with

$$
A_n(x) = \frac{1}{f(x)} \{ [g_n(x) - \mu_d(x)f(x)] - W_{n,d}(x) [f_n(x) - f(x)] \}
$$

$$
B_n(x) = \frac{1}{f(x)} \{ G_n(x) - T_n(x) [f_n(x) - f(x)] \}
$$

where

$$
g_n(x) = \frac{1}{nh_n} \sum_{j=0}^{n-1} K\left(\frac{x - X_{jd}}{h_n} \right) \mu_d(X_{jd})
$$

$$
f_n(x) = \frac{1}{nh_n} \sum_{j=0}^{n-1} K\left(\frac{x - X_{jd}}{h_n} \right)
$$

$$
W_{n,d}(x) = \frac{\sum_{j=0}^{n-1} K\left(\frac{x - X_{jd}}{h_n} \right) \mu_d(X_{jd})}{\sum_{j=0}^{n-1} K\left(\frac{x - X_{jd}}{h_n} \right)}
$$

$$
G_n(x) = \frac{1}{nh_n} \sum_{j=0}^{n-1} K\left(\frac{x - X_{jd}}{h_n} \right) \sigma_d(X_{jd})Y_{jd+d}
$$
Mixing Sequences

\[T_n(x) = \frac{\sum_{j=0}^{n-1} K \left(\frac{x - X_{jd}}{h_n} \right) \sigma_d(X_{jd}) Y_{jd+d}}{\sum_{j=0}^{n-1} K \left(\frac{x - X_{jd}}{h_n} \right)} \]

If \(|Y_{jd+d}| < M_n\) then \(|T_n(x)| < \text{constant} \times M_n \ a.s.\) where \(M_n \rightarrow \infty\) is a sequence to be defined later.

And we can write:

\[
\sup_{x \in C_n} |A_n(x)| \leq \frac{1}{\gamma_n} \left\{ \sup_{x \in C_n} |g_n(x) - \mu_d(x)f(x)| + \sup_{x \in C_n} |W_{n,d}(x)||f_n(x) - f(x)| \right\}
\]

\[
\sup_{x \in C_n} |B_n(x)| \leq \frac{1}{\gamma_n} \left\{ \sup_{x \in C_n} |G_n(x)| + \rho_2 M_n \sup_{x \in C_n} |f_n(x) - f(x)| \right\}
\]

where \(\rho_2\) is an upperbound of \(\sigma_d(.)\)

Lemma

Under hypotheses of Theorem 1, we have:

\[\frac{1}{\gamma_n} \sup_{x \in C_n} |g_n(x) - \mu_d(x)f(x)| \rightarrow 0, \ a.s. \quad n \rightarrow \infty. \]

proof

We have \(C_n = \{x : ||x|| \leq c_n\}\) where \(c_n \rightarrow \infty\) and

\[g_n(x) = \frac{1}{nh_n} \sum_{j=0}^{n-1} K \left(\frac{x - X_{jd}}{h_n} \right) \mu_d(X_{jd}) \]

then we write

\[g_n(x) - \mu_d(x)f(x) = (g_n(x) - Eg_n(x)) + (Eg_n(x) - \mu_d(x)f(x)). \]

We put \(g_n(x) - Eg_n(x) = \sum_{j=0}^{n-1} Z_j\) with

\[Z_j = \frac{1}{nh_n} \left\{ K \left(\frac{x - X_{jd}}{h_n} \right) \mu_d(X_{jd}) - E \left(K \left(\frac{x - X_{jd}}{h_n} \right) \mu_d(X_{jd}) \right) \right\} \]

by construction \(EZ_j = 0.\)
If \overline{K} and ρ_1 are upperbounds of K and μ_d respectively, we have: $|Z_j| \leq (2\overline{K} \rho_1)/(nh_n)$ and $E|Z_j| \leq (2\overline{K} \rho_1)/n$.

Now, let us write

$$\sum_{n=1}^{\infty} P(\gamma_n^{-1}|g_{n}(x) - E_{g_n}(x)| > \varepsilon) = \sum_{n=1}^{\infty} P(\gamma_n^{-1}\sum_{j=0}^{n-1} Z_j > \varepsilon).$$

Now we write for $\alpha > 1$

$$\psi_{nj} = Z_j I(|Z_j| \leq \alpha) \quad \text{and} \quad V_{nj} = Z_j I(|Z_j| > \alpha) \quad \text{for } 0 \leq j \leq n - 1.$$

Then,

$$|\sum_{j=0}^{n-1} Z_j| \leq |\sum_{j=0}^{n-1}(\psi_{nj} - E\psi_{nj})| + |\sum_{j=0}^{n-1} V_{nj}| + |\sum_{j=0}^{n-1} E\psi_{nj}|$$

We need to show the following:

$$\sum_{n=1}^{\infty} P(\gamma_n^{-1}\sum_{j=0}^{n-1}(\psi_{nj} - E\psi_{nj}) > \varepsilon n^{\alpha}/3) < \infty$$

$$\sum_{n=1}^{\infty} P(\gamma_n^{-1}\sum_{j=0}^{n-1} V_{nj} > \varepsilon n^{\alpha}/3) < \infty$$

$$\gamma_n^{-1}\sum_{j=0}^{n-1} E\psi_{nj}/n^{\alpha} \longrightarrow 0, \quad n \rightarrow \infty.$$

The Markov inequality and Chebyshev’s inequality lead to:
Mixing Sequences

\[\sum_{n=1}^{\infty} P(\gamma_n^{-1} \sum_{j=0}^{n-1} (\psi_{nj} - E\psi_{nj}) > \varepsilon n^a / 3) \leq c_1 \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} E|\psi_{nj}|^b / \gamma_n^b n^{\alpha b} \leq c_2 \sum_{n=1}^{\infty} \gamma_n^{-b} n^{-ab} < \infty \]

if we choose \(\gamma_n = n^{-a} \) with \(\alpha > a > 0 \) and where \(c_1 \) and \(c_2 \) are two positive constants and \(b \) such that \(b > 1/(\alpha - a) \). The Borel-Cantelli lemma permits to conclude for (4.2).

Now, note that

\[\left(\sum_{j=0}^{n-1} |V_{nj}| > \varepsilon n^a / 3 \right) \subset \bigcup_{j=0}^{n-1} (|Z_j| > n^{\alpha}) \]

then,

\[\sum_{n=1}^{\infty} P(\gamma_n^{-1} \sum_{j=0}^{n-1} V_{nj} > \varepsilon n^a / 3) \leq \sum_{n=1}^{\infty} nP(|Z_j| > n^{\alpha}) \gamma_n / n^{ab} \gamma_n^b \leq c_3 \sum_{n=1}^{\infty} n^{-ab} \gamma_n^{-b} < \infty \]

with \(\gamma_n = n^{-a} \) for \(a > 0 \) and such that \(b(\alpha - a) > 1 \) and where \(c_3 \) is a positive constant.

Lastly, we can write for \(\alpha > a \):

\[\gamma_n^{-1} n^{-a} \sum_{j=0}^{n-1} E\psi_{nj} \leq \gamma_n^{-1} n^{-a} \sum_{j=0}^{n-1} E|\psi_{nj}| = \gamma_n^{-1} n^{-a} \sum_{j=0}^{n-1} E|Z_j|I(|Z_j| > n^{\alpha}) = n^{a-a} E|Z_j|I(|Z_j| > n^{\alpha}) \longrightarrow 0. \]

Next we cover \(C_n \) by \(\delta_n \) spheres in the shape of \(\{ x : ||x - x_{nk}|| \leq c_n \delta_n^{-1} \} \) for \(1 \leq k \leq \delta_n \).

\(\delta_n \rightarrow \infty \) and \(\delta_n \) chosen such that \(\delta_n \rightarrow \infty \) to be defined later, and we make use of the following decomposition.

\[\sum_{j=0}^{n-1} |Z_j| \leq |g_n(x) - g_n(x_{nk})| + |E[g_n(x) - g_n(x_{nk})]| + |g_n(x_{nk}) - Eg_n(x_{nk})|. \]

The first and the second component in the right-hand side of the inequality above, will be considered in the same manner.

The kernel \(K \) being Lipschitz, we obtain
\[
\sup_{x \in C_n} |g_n(x) - g_n(x_{nk})| \leq \frac{L_K \rho_1}{h_n^{1+\gamma_1}} |x - x_{nk}|^{\gamma_1} \leq \frac{L_K \rho_1}{h_n^{1+\gamma_1}} c_n \delta_n^{-\gamma_1} = \frac{1}{\log n}
\]
\[
\delta_n \text{ is chosen such that :}
\]
\[
\delta_n = \frac{L_1^{1/\gamma_1} \rho_1^{1/\gamma_1} (\log n)^{1/\gamma_1} c_n}{h_n^{(1+\gamma_1)/\gamma_1}} \to \infty.
\]
Then
\[
\left| \sum_{j=0}^{n-1} Z_j \right| \leq \sup_{1 \leq k \leq \delta_n} |g_n(x_{nk}) - Eg_n(x_{nk})| + \frac{2}{\log n}
\]
so that for all \(n \geq n_1(\varepsilon_n) \), \(\forall \varepsilon_n > 0 \) we have
\[
P \left(\gamma_n^{-1} \sup_{x \in C_n} \left| \sum_{j=0}^{n-1} Z_j \right| > 2\varepsilon_n \right) \leq \sum_{k=1}^{\delta_n} P \left\{ \gamma_n^{-1} |g_n(x_{nk}) - Eg_n(x_{nk})| > \varepsilon_n \right\}.
\]
Now, using similar decomposition as in (4.1) \(\delta_n \) times; the use of \(\delta_n n_\alpha \gamma_n^{-1} \) instead of \(\gamma_n^{-1} n_\alpha \) and hypotheses of Theorem 1 permit to conclude that
\[
\gamma_n^{-1} \sup_{x \in C_n} \left| \sum_{j=0}^{n-1} Z_j \right| \to 0, \quad a.s., n \to \infty.
\]
It remains to show that : \(\gamma_n^{-1} \sup_{x \in C_n} |Eg_n(x) - \mu_d(x)f(x)| \to 0, \quad n \to \infty. \)

We write
\[
\gamma_n^{-1} \sup_{x \in C_n} |Eg_n(x) - \mu_d(x)f(x)| \leq \gamma_n^{-1} h_n^{-1} \sup_{x \in C_n} \int K(h_n^{-1}(u-x))|\mu_d(u) - \mu_d(x)| f(u) du
\]
\[
+ \gamma_n^{-1} h_n^{-1} \sup_{x \in C_n} |\mu_d(x)| \int K(h_n^{-1}(u-x))|f(u) - f(x)| du = I_1 + I_2.
\]
Now if we put \(z = h_n^{-1}(u - x) \), the fact that \(\mu_d \) is Lipschitz provides
\[
I_1 \leq \gamma_n^{-1} h_n \sup_{x \in C_n} \int |z| K(z) f(z h_n + x) dz
\]
then a choice such as \(\gamma_n^{-1} h_n \to 0 \) conclude that \(I_1 \to 0 \) when \(n \to \infty. \)
It remains to show that \(I_2 \rightarrow 0 \).

\[
I_2 = \gamma_n^{-1} \sup_{x \in C_n} |\mu_d(x)| \int K(z)|f(\epsilon_n x + f(x)|dz
\]

A taylor expansion gives:

\[
I_2 \leq \rho_1 \gamma_n^{-1} h_n \int |z|K(z)f'(x)dz + 0.5 \rho_1 \gamma_n^{-1} h_n^2 \int z^2 K(z)f''(x)dz \rightarrow 0, \quad n \rightarrow \infty.
\]

where \(\rho_1 \) is an upper bound of \(\mu_d \).

Lemma

Under hypotheses of Theorem 1, we have:

\[
\gamma_n^{-1} \sup_{x \in C_n} |f_n(x) - f(x)| \rightarrow 0, \text{ a.s. when } n \rightarrow \infty.
\]

proof

This is a particular case of Lemma 3 when \(\mu_d(x) = 1 \).

Now, the kernel \(K \) being positive, we get \(\sup_{x \in C_n} |W_{n,d}(x)| < \rho_1 \) where \(\rho_1 \) is an upper bound of \(\mu_d \).

And we conclude that:

\[
\sup_{x \in C_n} |A_n(x)| \leq \frac{1}{\gamma_n} \sup_{x \in C_n} |g_n(x) - \mu_d(x)f(x)| + \frac{\rho_1}{\gamma_n} \sup_{x \in C_n} |f_n(x) - f(x)|.
\]

Lemma

Under hypotheses of Theorem 1, we have:

\[
\gamma_n^{-1} \sup_{x \in C_n} |G_n(x)| \rightarrow 0 \quad \text{a.s.} \quad n \rightarrow \infty.
\]

proof

The study of \(G_n(x) \) cannot be made directly because of the possible large values of the variables \(Y_{jd+d} \) so we use a truncation technique which consists in decomposing \(G_n(x) \) in \(G_n^+(x) \) and \(G_n^-(x) \) where

\[
G_n^+(x) = \frac{1}{nh_n} \sum_{j=0}^{n-1} K \left(\frac{x - X_{jd}}{h_n} \right) \sigma_d(X_{jd})Y_{jd+d}I_{[|Y| > M_n]}
\]
and \(G_n^-(x) = G_n(x) - G_n^+(x) \) with \(M_n \) a nondecreasing and unbounded sequence.

We write:

\[
\gamma_n^{-1} \sup_{x \in C_n} |G_n^+(x) - EG_n^+(x)| \leq E_n + F_n
\]

with:

\[
E_n = \frac{1}{n \gamma_n h_n} \sup_{x \in C_n} \sigma_d(X_{jd}) \sum_{j=0}^{n-1} K \left(\frac{x - X_{jd}}{h_n} \right) |Y_{jd+d}I_{|Y|>M_n}|
\]

we have \((E_n \neq 0) \subset \{ \exists j_0 \in [0, 1, \ldots, n - 1] \text{ such that } |Y_{j_0}| > M_n \}\)

\[
(P(E_n \neq 0) \leq \sum_{j=0}^{n-1} P \{ |Y_{jd+d}| > M_n \} = nP \{ |Y_0| > M_n \})
\]

with \(M \) being a positive constant and \(\beta \) such that \(\beta > (2/\xi) \). Then it is sufficient to choose \(M_n = n^\xi \) for some \(\xi \in [0, 1/2[\) to get \(\sum_n P(E_n \neq 0) < \infty \).

We conclude with Borel-Cantelli Lemma that \(E_n \to 0, \ a.s. \ n \to \infty \)

and \(\sup_{0 \leq j \leq n-1} |Y_{jd+d}| \leq M_n \ a.s. \)

Then the kernel \(K \) being strictly positive , we deduce that \(|T_n(x)| \leq \rho_2 M_n \ a.s. \)

Now,

\[
F_n = \frac{1}{n \gamma_n h_n} \sup_{x \in C_n} \left| \sum_{j=0}^{n-1} K \left(\frac{x - X_{jd}}{h_n} \right) \sigma_d(X_{jd})Y_{jd+d}I_{|Y|>M_n} \right|
\]

\[
E(F_n) \leq \frac{K \rho_2}{\gamma_n h_n} E \left(|Y| I_{|Y|>M_n} \right)
\]

where \(K \) and \(\rho_2 \) are upperbounds of \(K \) and \(\sigma_d \) respectively.

Then

\[
E(F_n) \leq \frac{K \rho_2}{\gamma_n h_n} \left(E(Y^2) \right)^{1/2} \left(P(|Y| > M_n) \right)^{1/2} \leq \frac{c_3}{\gamma_n h_n M_n^{3/2}}
\]

where \(c_3 \) is a positive constant and \(M_n \) is the sequence defined above.

This leads to \(E(F_n) \to 0, \ n \to \infty \implies F_n \to 0, \ a.s. \) when \(n \to \infty \), with the choice \(\gamma_n = n^{-a} \) for \(a > 0 \), \(h_n = n^{-\tau} \) for \(0 < \tau < 1 \) and \(1 < \beta < 2(a + \tau) \).
It remains to show that:

$$\gamma_n^{-1} \sup_{x \in C_n} |G_n^-(x) - EG_n^-(x)| \to 0, \ a.s. \ n \to 0$$

we write:

$$G_n^-(x) - EG_n^-(x) = \sum_{j=0}^{n-1} T_j$$

with

$$T_j = \frac{1}{nh_n} \left\{ K \left(\frac{x - X_{jd}}{h_n} \right) \sigma_d \left(X_{jd} \right) Y_{jd+dI[|Y|\leq M_n]} - E \left[K \left(\frac{x - X_{jd}}{h_n} \right) \sigma_d \left(X_{jd} \right) Y_{jd+dI[|Y|\leq M_n]} \right] \right\}$$

$$|T_j| \leq (c_4 M_n) / (nh_n)$$, where c_4 is a positive constant.

Now let us write

$$\sum_{n=1}^{\infty} P(\gamma_n^{-1} |G_n^-(x) - EG_n^-(x)| > \varepsilon) = \sum_{n=1}^{\infty} P(|G_n^-(x) - EG_n^-(x)| > \gamma_n \varepsilon)$$

same arguments as in the proof of lemma 3 permit to conclude that

$$\gamma_n^{-1} \sup_{x \in C_n} |G_n^-(x) - EG_n^-(x)| \to 0, \ a.s. \ n \to \infty.$$

In the end, the fact that:

$$G_n(x) = G_n(x) - EG_n(x)$$

permit to conclude that

$$\gamma_n^{-1} \sup_{x \in C_n} |G_n(x)| \to 0, \ a.s., \ n \to \infty.$$

Finally, similar works to those used in Lemma 4 with the use of $\gamma_n^{-1} M_n$ instead of γ_n^{-1} permit to conclude that:
\[
\gamma_{n}^{-1} M_n \sup_{x \in C_n} |f_n(x) - f(x)| \longrightarrow 0, \quad a.s. \quad n \longrightarrow \infty.
\]

5. **Proof of the Main Results**

5.1 **Proof of Theorem 1**

Lemmas 3, 4 and 5 permit to conclude.

5.2 **Proof of Corollary 2**

It suffices to write:

\[
\frac{\mu_{d,n}(x)}{d} - \mu(x) = \frac{\mu_{d,n}(x) - \mu(x)}{d} + \left[\frac{\mu_{d}(x)}{d} - \mu(x) \right]
\]

Then, similar techniques to those of Theorem 1 with the conditions of Corollary 2 permit to conclude.

Acknowledgements

The author is grateful to the referees for their comments.

References

