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An exact solution for the concentration profile in tubes with surface reaction coupled
with permeation have been obtained in terms of fast converging confluent hypergeo-
metric function that gives accurate results. An excellent agreement between the
experimental and theoretical results of the intracellular calcium ion concentration in the
calf aorta endothelial cells and the extracellular ATP concentration provides yet another
example in support of the mass transfer model for intracellular calcium response of the
endothelial cells.
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INTRODUCTION

Vascular endothelium is the simplest epithelium lining the entire
vascular system and the only constituent of a capillary wall performing
the ultimate function of the entire system, i.e. exchange of nutrients
and metabolic end-products of the tissue. To provide strength to a
blood vessel, this layer of endothelial cell is supported by layers
of elastic tissue, connective tissue, smooth muscles, etc. However, to
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facilitate solute transport, no such supporting tissues are present
around the endothelial cell layer in capillaries. The structure of a
typical capillary is like a thin walled tube made of one layer thick
endothelial cells, about 1-2 pm thick and about 20—50 pm in circum-
ferential diameter. To restrict the movement of large protein mole-
cules, these cells are joined together by “tight junctions” [1]. Capillary
wall made up of such an arrangement is highly permeable to water and
almost all solutes dissolved in blood plasma except protein. Thus it
behaves like a semipermeable membrane through which protein free
plasma is filtered out. The plasma inside and outside the capillary
contains large amount of small molecular weight solutes like Na™,
Cl7, glucose, etc. Since capillary wall is highly permeable to these
molecules, the inside and outside concentrations are almost the same.
The permeation and several other physiological characteristics of an
endothelial cell depends considerably on the concentration of different
constituents in its surrounding fluid [2,3].

To explain such physiological and morphological changes in endo-
thelial cells, a convective mass transfer model has been proposed by
various authors. In our earlier communication [4], we have already
discussed some of these changes in the endothelial cells due to the
presence of different agonists and their degradation (surface reaction)
at the cell layer. In that paper the differential equation pertaining to
the newly emerging convective mass transfer model for the intracel-
lular calcium response of cultured endothelial cells was solved
analytically. The differential equation and velocity profiles used were
for the rectangular channel geometry (without permeation) which
represent the commonly used experimental set-up for the study of
cultured endothelial cells [S—7]. In real situation, however, almost all
blood vessels resemble more to a tube having circular cross-section.
Also, a few workers [8] have made experiments with cultured endo-
thelial cells supported inside circular glass tubes. Due to this geometry,
the differential equation and boundary conditions for the mass trans-
fer model are remarkably different. Due to varying permeation charac-
teristics of endothelium from different parts of the body, it is desirable
to have solutions for almost impermeable to highly permeable cases.

In the present paper two processes, surface reaction and permeation
through the walls of a tube having circular cross-section, are being
considered. The surface reaction is taken to be the degradation of
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specific agonist like adenosine triphosphate (ATP) through successive
dephosphorylation by three separate actoenzymes [4] and permeation
of blood plasma through the endothelium is assumed to be constant
throughout the length of the tube.

MATHEMATICAL FORMULATION

Mathematical formulation of the problem has been considered for two
cases, i.e., surface reaction inside a permeable tube and surface reac-
tion without permeation.

Case-1: Surface Reactioninside a Permeable Tube

Based on the model proposed by Elliott et al. [9,10], Mansour [11]
tried to solve a similar problem for absorption coupled with permea-
tion through intestinal wall with circular cross-section. Considering
very small permeation velocity compared to axial velocity, he neg-
lected radial velocity term and took the equation for velocity profile
the same as that for the laminar flow through pipes. Further, assuming
very high absorption rate (sink condition), the surface concentration
was taken to be zero all along the tube length. In the present paper,
however, the reaction rate is assumed to be finite (i.e., the surface
concentration is not zero) and a modified velocity profile is being used.

The velocity profile in a circular tube with constant wall perme-
ability has been developed by several workers [12,13]. According to
these approaches, the axial velocity () in case of low permeation rate

can be given by
u=2(u>[1—2—<z;v—;] [1— (%)2} )

Since the fluid velocity component in the radial direction (v) is
several orders of magnitude smaller than that in the axial direction (),
therefore, the mathematical model for ATP transport inside a circular
tube (equation of continuity for constant density and diffusivity)
reduces to

2<u>[1 —%4;”—;] [1— (%)1%-5:%%%%—?]- (2)
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The wall of the tube (at r = R), made of epithelial cell, provides a
permeating as well as a reacting surface with first order chemical kine-
tics [7]. Hence, at the steady state, mass consumed at the surface in
chemical reaction is equal to the sum of mass fluxes approaching the
surface due to diffusion and convection. Thus we have

oc
_DE +vwC = kC. (3)
r=R
This gives
oC
B.C. L > = —(k—vw)C/D (for all x). (4a)
r=R

The axisymmetric condition gives

ac

B.C. I =0 (for all x) (4b)

r=0

and for a uniform inlet concentration, we have
B.C. III: C=Cypatx=0 (forallr). (4c)

Using the dimensionless concentration ¢ (= C/Cy), radial distance y
(=r/R) and by defining a dimensionless axial distance parameter

[n(x)] as

_ 2vwx| ¢
=1 -] ®)
Eq. (2) reduces to
dc 8% 10c
—_ 2 —_— | —_— —_——
=7 )077 [372+r37]' ©

Here, it is noteworthy that 7 varies from 0 to oo as x varies from 0 to
its upper limit (i.e., (x) R/2vw) where the total volume filtered becomes
equal to the volumetric feed rate. The corresponding boundary
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conditions (Eq. (4)) in dimensionless form become

B.C. I g—c = —(k—vw)Re/D = —yc (for allm), (7a)
7]
Oc
BC.I: 2| =0 (forall n) (7b)
Oy
=0
B.C. III: c=1atn=0 (forall~). (7c)

The parameter ¢ in Eq. (7a) is the modified Thiele modulus for
coupled reaction—permeation problem.

The procedure for solving Eq. (6) along with boundary conditions
(Egs. (7)) are given in Appendix. As discussed in our earlier commu-
nication [4], the Thiele modulus (¢?) is always positive whereas the
modified Thiele modulus (¢)) in Eq. (7a) may be either positive or
negative depending upon the value of k and vw. The complete solution
of Eq. (2) and associated boundary conditions becomes

o0 Ma/4
c_ 3 4, [1 - ——vax]
G (W)R

x exp[—Anr2/2RIM(1/2 — M, /4, 1, A\r?/R3), (8)

where )\, and A, are nth eigenvalue and coefficient, respectively.

Case-2: Surface Reaction without Permeation

Equation (8) cannot be used for impermeable tubes since it becomes
indeterminate when vy is equated to zero. The velocity profile in case
of impermeable tubes can be obtained by substituting vw=0 in
Eq. (1). This gives the model equation for ATP transport as

ry\2| oC 0*C 10C
2u) [1 (%) ]a-”[@‘ﬁm]- ©)
In the dimensionless form, Eq. (9) reduces to

Oc 8%¢ 10c
4(1 — 72)8—5 = [6_’72-'—;8_’)’.] (10)
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where, £ is the dimensionless axial distance (2Dx/(u)R? and the
boundary conditions in dimensionless form become

B.C. I g—;. . = —%c = —¢?c (for all ¢), (11a)
Oc
B.C. II: — =0 (forall ) (11b)
oy
=0
and
B.C. III: c=1atf&=0 (forall+y). (11c)

The parameter ¢ in Eq. (11a) is the well known Thiele modulus. Since
the form of the differential equations (Egs. (6) and (10)) and the
boundary conditions (Eqgs. (7) and (11)) are identical, hence the
solution procedure for these equations are also identical to that
explained in the Appendix. However, the concentration profile in case
of impermeable tube is different from that expressed in Eq. (8) for
permeable tubes. The concentration profile in this case becomes

C_v< _An (Dx _ 2/ p2
a——;Anexp[ SR8 <<u>+r )}Mu/z M/4, 1, Ar2/R%).
(12)
DISCUSSION

In the past, attempts have been made to obtain concentration profiles
under similar conditions using different approaches. Mansour [11]
solved similar problem for intestinal wall permeability (sink condition)
by the method of Laplace transformation, Kumar et al. [4] obtained
concentration profile in rectangular channel geometry using the
present mass transfer model for ATP transport and Kumar [13] solved
the present problem by using a computer simulator based on modified
finite difference method [14].

Figure 1 shows the variation of dimensionless concentration in the
bulk of liquid as a function of dimensionless radial distance (), by
computer simulator [13,14], Laplace transformation [11] and the
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FIGURE 1 Comparison of ATP concentration in the bulk of liquid inside the tube
calculated by three approaches at ¢>=5.0.

present approach for ¢*=35 and at various axial positions (£). Solid
lines are obtained by the present solution given by Eq. (12) and the
results obtained by a computer simulation [13,14] are shown as point
values. Dotted lines are obtained by the solution proposed by
Mansour [11] by substituting the value of dimensionless permeation
(vwR/D) equal to ¢?. This makes the B.C. I defined by Mansour [11]
identical to Eq. (11a). It is observed that results of the present solution
and the computer simulation are in excellent agreement whereas the
concentration is always lower when diffusion controlled surface
reaction (sink condition) is assumed. However, the concentration
profile in the bulk of liquid obtained for the sink condition [11] is close
to the values obtained by the present approach when the Thiele
modulus is very large (i.e., #*=10%).

A comparison of the dimensionless wall concentration obtained by
the computer simulator and analytical solution (using 50 eigenvalues)
at =5 and 20 is presented in Fig. 2 as a function of dimensionless
axial position (£). Results obtained by two methods are in good
agreement for larger values of £. For very small £ (<3 x 1077), that
comes to about 10-20 um from the inlet end for practical situation,
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FIGURE 2 Dimensionless ATP concentration near the cell surface (r=R) in an
impermeable tube as a function of axial distance £ (= ZDx/(u)Rz).

analytical solution under predicts the wall concentration. This is due
to the fact that analytical method requires even more eigenvalues in
this region. Increase in the number of eigenvalues, however, does not
lead to improvement in the results due to truncation and rounding off
errors during computation.

The dimensionless wall concentration in case of surface reaction
coupled with permeation and negative value of ¢ (=—0.1), i.e., the
case when rate of approach of ATP to the cell layer by convection is
greater than the rate of consumption due to reaction, has been plotted
in Figs. 3 and 4. These figures show that when the concentration is
plotted against dimensionless distance ¢ (Fig. 3), different lines for
different values of « are obtained, whereas when the same concentra-
tion is plotted as a function of 7 (Fig. 4) we get only a single line from
both analytical solution as well as the computer simulator (which is
based on an entirely different approach). However, the computational
time required for the computer simulator is about 50 times higher than
that for analytical solution.

Figure 5 compares the dimensionless cytosolic Ca®* concentration
obtained by Dull and Davies [8] as a function of shear stress at
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FIGURE 3 Dimensionless ATP concentration near the cell surface (r=R) in a
permeable tube as a function of axial distance £ (= 2Dx/(u)R?).
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FIGURE 4 Dimensionless ATP concentration near the cell surface (r=R) in a
permeable tube as a function of axial distance 7.
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FIGURE 5 Comparison of experimental and predicted values of dimensionless ATP
concentration near the cell surface (r=R) in an impermeable tube as a function of
shear stress 7.

¢*=20. The details of obtaining dimensionless Ca>* concentration are
given in Kumar and Upadhyay [15] and the correlation for predicting
shear stress in terms of £ are given in Kumar et al. [4]. Within the range
covered by the experiments, there is very good agreement between the
experimental values of dimensionless cytosolic Ca®* ion concentration
and the extracellular ATP concentration predicted by using simulator
and analytical methods.

CONCLUSIONS

In the present work solutions for the concentration profile in tubes
with surface reaction coupled with permeation have been obtained in
terms of confluent hypergeometric function. Due to the fast conver-
ging nature of this function, larger number of eigenvalues could be
calculated compared to the other solution procedure such as power-
series approach, leading to more accurate results.

A good comparison of the experimental and theoretical results of
the intracellular Ca®>* concentration in the calf aorta endothelial cells
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and the extracellular ATP concentration provides yet another example
in support of the mass transfer model for intracellular calcium
response of the endothelial cells.

NOMENCLATURE

A constant,

C concentration (g/ml),

Co feed concentration (g/ml),

c concentration [C/Cy] (dimensionless),

D diffusivity of ATP in the solution (cm?/s),

L axial distance (2 vwx/(u) R?) (dimensionless),

R radius of the tube (cm),

r radial distance measured from the axis of the tube (cm),
(u)y  volume average feed velocity (cm/s),

vw  permeation velocity (cm/s),

b axial distance measured from the tube inlet (cm).
Greek

«a dimensionless parameter (D/vwR),

5y dimensionless radial distance (r/R),

n axial distance, defined in Eq. (5) (dimensionless),
A2 eigenvalue,

¢ axial distance (2 Dx/(u)R?) (dimensionless),

#>  Thiele modulus (kR/D) (dimensionless),

1»  modified Thiele modulus [(k — vwR/D] (dimensionless),
Subscript

n  indicating parameter based on nth eigenvalue.
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APPENDIX
Equations (6) and (10) are of the form:

dc 0%* 10c

4(1—72)5(:572’4‘;‘8;, (A.1)

where x may be either n (Eq. (6)) or £ (Eq. (10)) and boundary
condition in dimensionless form are:

¢

B.C. 1:
C P

= —fc (for all x), (A.2)
y=1
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B.C. II: 9c =0 (forall x) (A.3)
oy
=0
and
B.C. III: c=1atx=0 (forall~). (A4)

where 6 may be either the Thiele modulus (¢?) or the modified Thiele
modulus ().

To solve Eq. (A.1) along with boundary conditions (A.2)—(A.4) by
the method of separation of variables it is assumed that

c=X(x)- Y()- (A.5)

Substituting in Eq. (A.1) we get two simultaneous differential
equations:

&y 1dy 5
5,7—2+;EY—+A(1_7)Y_0 (A.6)
and
dx A2X
a -_ _4—'. (A-7)
The solution of Eq. (A.7) is
X = B exp (—\2x/4), (A.8)

whereas Eq. (A.2) can be transformed to the confluent hypergeometric
equation:

z%—l—(b—z)j—:)—aw——-o (A9)
by two transformations
z=Xy? (A.10)
and
w= Ye?/?, (A.11)

where a=(1/2—\/4)and b=1.
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Equation (A.9) is the well known confluent hypergeometric equa-
tion (Kummer’s equation) and its solution is

w=A1M(a,b,z) + A, U(a,b,z). (A.12)

The first confluent hypergeometric function is

M(a,b,x) = i (@, (A.13)
s Yo - Lt ( b)nn! > o
where (a),=a(a+ 1)(a+2)---(a+n—1)and (a)y=1.
When b is equal to unity, the second hypergeometric function, which
is a multi-valued function [16], can be given by

U(a,1,z) = M(a, 1,z) In(z) +i((g)m')22m
m=1 \M:
B“L“'JFEJT;;{?T" (%++;f;)] (A.14)

Thus the complete solution of Eq. (A.9) becomes

w=A1M(a,1,z) + 4, [M(a, 1, z) In(2)

+g%§{%+...+ﬁ_;_j_<§+...+%)}]_ (A15)

Now, B.C. Il in terms of w and z becomes

Substituting the value of w from Eq. (A.15) and taking the limiting
case when z is tending to zero, we get

A10+A2£E%[<a—%)ﬁ ln(z)-l—%] =0. (A.17)
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The limiting value of the term inside the parenthesis at the left hand
side of Eq. (A.17) becomes infinity as z tends to zero. Therefore, to
satisfy Eq. (A.17), and hence the B.C. 11, A, should be zero.

Thus the complete solution of Eq. (A.9) reduces to

w=A1M(a,1,z). (A.18)
Again, from B.C. I (Eq. (A.2)) in terms of w and z we have
2)\d—w + (0= Nw(A) =0. (A.19)
dz |,_,

Substituting the value of w from Eq. (A.18) we get
Ai2adM(a+ 1,2, A) + (6 — \)M(a,1,\)] = 0. (A.20)
Since 4 # 0, therefore we get the characteristic equation as
200M(a+1,2,0) + (0 — ) M(a,1,)) =0. (A.21)

Roots of the characteristic equation give eigenvalues (),). About 50
eigenvalues for different values of ¢ were calculated. A few of them at
each 1 are given in Table Al

Now, from Egs. (A.11) and (A.18) we get the eigenfunction as

Y, = M(ay, 1,2, )e"%/2. (A.22)

Since Eq. (A.6) along with B.C. I and B.C. II constitutes a Sturm—
Liouville problem, eigenvalues )\, and eigenfunction Y, form an
orthogonal set with respect to the weight function (1 — 7?) over the
interval [0, 1], i.e.,

1
/ y(1 =~41Y,Y,dy=0 when m # n and
0

(A.23)
#0 when m=n.
Therefore by using B.C. III and Eq. (A.23) we get
1
1-~3Y,d
_ Jor(1 =42 Y, dy (A24)

=) Y2dy
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CALCIUM RESPONSE OF ENDOTHELIUM 371

Details for finding the values of integrals in Eq. (A.24) are given
elsewhere [4], which gives

A= e (A25)
0Y2(1) + [y v(dY,/dy) dy
where
Y,(1) = M(an, 1, \,)e /2 (A.26)
and
‘L’;” =2\ M M(a, + 1,2, Ay a, — Mi"—é—“’—z) . (A27)

To evaluate 4, using Eq. (A.25), Eq. (A.27) was integrated numeri-
cally by Simpson’s 1/3 rule.



