Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 625861, 12 pages
Research Article

Optimization of Resource Control for Transitions in Complex Systems

Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania

Received 7 March 2012; Accepted 2 April 2012

Academic Editor: Cristian Toma

Copyright © 2012 Florin Pop. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In complex systems like Large-Scale Distributed Systems (LSDSs) the optimization of resource control is an open issue. The large number of resources and multicriteria optimization requirements make the optimization problem a complex one. The importance of resource control increases with the need of use for industrial process and manufacturing, being a key solution for QoS assuring. This paper presents different solutions for multiobjective decentralized control models for tasks assignment in LSDS. The transaction in real-time complex system is modeled in simulation by tasks which will be scheduled and executed in a distributed system, so a set of specifications and requirements are known. The paper presents a critical analysis of existing solutions and focuses on a genetic-based algorithm for optimization. The contribution of the algorithm is the fitness function that includes multiobjective criteria for optimization in different way. Several experimental scenarios, modeled using simulation, were considered to offer a support for analysis of near-optimal solution for resource selection.