Mathematical Problems in Engineering
Volume 2010 (2010), Article ID 879519, 23 pages
Research Article

Numerical Investigation of Aeroelastic Mode Distribution for Aircraft Wing Model in Subsonic Air Flow

Department of Mathematics and Statistics, University of New Hampshire, Durham, NH 03824, USA

Received 31 July 2009; Accepted 30 November 2009

Academic Editor: José Balthazar

Copyright © 2010 Marianna A. Shubov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In this paper, the numerical results on two problems originated in aircraft wing modeling have been presented. The first problem is concerned with the approximation to the set of the aeroelastic modes, which are the eigenvalues of a certain boundary-value problem. The affirmative answer is given to the following question: can the leading asymptotical terms in the analytical formulas be used as reasonably accurate description of the aeroelastic modes? The positive answer means that these leading terms can be used by engineers for practical calculations. The second problem is concerned with the flutter phenomena in aircraft wings in a subsonic, incompressible, inviscid air flow. It has been shown numerically that there exists a pair of the aeroelastic modes whose behavior depends on a speed of an air flow. Namely, when the speed increases, the distance between the modes tends to zero, and at some speed that can be treated as the flutter speed these two modes merge into one double mode.