Mathematical Problems in Engineering
Volume 2008 (2008), Article ID 940526, 11 pages
Research Article

Dynamical Models for Computer Viruses Propagation

José R. C. Piqueira and Felipe Barbosa Cesar

Escola Politécnica da Universidade de São Paulo, Avenida Prof. Luciano Gualberto, travessa 3 - 158, 05508-900 São Paulo, SP, Brazil

Received 28 March 2008; Revised 9 May 2008; Accepted 30 May 2008

Academic Editor: Jose Balthazar

Copyright © 2008 José R. C. Piqueira and Felipe Barbosa Cesar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Nowadays, digital computer systems and networks are the main engineering tools, being used in planning, design, operation, and control of all sizes of building, transportation, machinery, business, and life maintaining devices. Consequently, computer viruses became one of the most important sources of uncertainty, contributing to decrease the reliability of vital activities. A lot of antivirus programs have been developed, but they are limited to detecting and removing infections, based on previous knowledge of the virus code. In spite of having good adaptation capability, these programs work just as vaccines against diseases and are not able to prevent new infections based on the network state. Here, a trial on modeling computer viruses propagation dynamics relates it to other notable events occurring in the network permitting to establish preventive policies in the network management. Data from three different viruses are collected in the Internet and two different identification techniques, autoregressive and Fourier analyses, are applied showing that it is possible to forecast the dynamics of a new virus propagation by using the data collected from other viruses that formerly infected the network.