Mathematical Problems in Engineering
Volume 2008 (2008), Article ID 754951, 14 pages
Research Article

Experimental Active Vibration Control in Truss Structures Considering Uncertainties in System Parameters

Douglas Domingues Bueno, Clayton Rodrigo Marqui, Rodrigo Borges Santos, Camilo Mesquita Neto, and Vicente Lopes Jr.

Grupo de Materiais e Sistemas Inteligentes (GMSINT), Departamento de Engenharia Mecânica (DEM), Faculdade de Engenharia de Ilha Solteira (FEIS), Universidade Estadual Paulista (UNESP), Avenida Brasil Centro 56, 15385-000 Ilha Solteira, SP, Brazil

Received 16 October 2007; Revised 11 June 2008; Accepted 9 August 2008

Academic Editor: Paulo Gonçalves

Copyright © 2008 Douglas Domingues Bueno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper deals with the study of algorithms for robust active vibration control in flexible structures considering uncertainties in system parameters. It became an area of enormous interest, mainly due to the countless demands of optimal performance in mechanical systems as aircraft, aerospace, and automotive structures. An important and difficult problem for designing active vibration control is to get a representative dynamic model. Generally, this model can be obtained using finite element method (FEM) or an identification method using experimental data. Actuators and sensors may affect the dynamics properties of the structure, for instance, electromechanical coupling of piezoelectric material must be considered in FEM formulation for flexible and lightly damping structure. The nonlinearities and uncertainties involved in these structures make it a difficult task, mainly for complex structures as spatial truss structures. On the other hand, by using an identification method, it is possible to obtain the dynamic model represented through a state space realization considering this coupling. This paper proposes an experimental methodology for vibration control in a 3D truss structure using PZT wafer stacks and a robust control algorithm solved by linear matrix inequalities.