Mathematical Problems in Engineering
Volume 2008 (2008), Article ID 410156, 20 pages
Research Article

Relativistic Short Range Phenomena and Space-Time Aspects of Pulse Measurements

Ezzat G. Bakhoum1 and Cristian Toma2

1Department of Electrical and Computer Engineering, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, USA
2Faculty of Applied Sciences, Politechnica University, Hagi-Ghita 81, 060032 Bucharest, Romania

Received 22 April 2008; Accepted 5 May 2008

Academic Editor: Carlo Cattani

Copyright © 2008 Ezzat G. Bakhoum and Cristian Toma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Particle physics is increasingly being linked to engineering applications via electron microscopy, nuclear instrumentation, and numerous other applications. It is well known that relativistic particle equations notoriously fail over very short space-time intervals. This paper introduces new versions of Dirac's equation and of the Klein-Gordon equation that are suitable for short-range phenomena. Another objective of the paper is to demonstrate that pulse measurement methods that are based on the wave nature of matter do not necessarily correlate with physical definitions that are based on the corpuscular nature of particles.