Journal of Applied Mathematics
Volume 2013 (2013), Article ID 891409, 13 pages
Research Article

Distribution Network Design for Fixed Lifetime Perishable Products: A Model and Solution Approach

1Department of Mechanical and Manufacturing Engineering, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Industrial Engineering Department, College of Engineering, Shahid Bahonar University, Kerman 7618891167, Iran
3Department of Mathematics and Computer Science, University of Economic Sciences, Tehran 1593656311, Iran

Received 21 October 2012; Revised 16 February 2013; Accepted 27 February 2013

Academic Editor: Yuri Sotskov

Copyright © 2013 Z. Firoozi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Nowadays, many distribution networks deal with the distribution and storage of perishable products. However, distribution network design models are largely based on assumptions that do not consider time limitations for the storage of products within the network. This study develops a model for the design of a distribution network that considers the short lifetime of perishable products. The model simultaneously determines the network configuration and inventory control decisions of the network. Moreover, as the lifetime is strictly dependent on the storage conditions, the model develops a trade-off between enhancing storage conditions (higher inventory cost) to obtain a longer lifetime and selecting those storage conditions that lead to shorter lifetimes (less inventory cost). To solve the model, an efficient Lagrangian relaxation heuristic algorithm is developed. The model and algorithm are validated by sensitivity analysis on some key parameters. Results show that the algorithm finds optimal or near optimal solutions even for large-size cases.