Journal of Applied Mathematics
Volume 2013 (2013), Article ID 595897, 13 pages
Research Article

A Model Reduction Method for Parallel Software Testing

College of Computer Science, Inner Mongolia University, Hohhot 010021, China

Received 1 February 2013; Accepted 9 June 2013

Academic Editor: Guiming Luo

Copyright © 2013 Tao Sun and Xinming Ye. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Modeling and testing for parallel software systems are very difficult, because the number of states and execution sequences expands significantly caused by parallel behaviors. In this paper, a model reduction method based on Coloured Petri Net (CPN) is shown, which could generate a functionality-equivalent and trace-equivalent model with smaller scale. Model-based testing for parallel software systems becomes much easier after the model is reduced by the reduction method. Specifically, a formal model for software system specification is constructed based on CPN. Then the places in the model are divided into input places, output places, and internal places; the transitions in the model are divided into input transitions, output transitions, and internal transitions. Internal places and internal transitions could be reduced if preconditions are matching, and some other operations should be done for functionality equivalence and trace equivalence. If the place and the transition are in a parallel structure, then many execution sequences will be removed from the state space. We have proved the equivalence and have analyzed the reduction effort, so that we could get the same testing result with much lower testing workload. Finally, some practices and a performance analysis show that the method is effective.