Journal of Applied Mathematics
Volume 2012 (2012), Article ID 945238, 14 pages
Research Article

The Hamiltonian System Method for the Stress Analysis in Axisymmetric Problems of Viscoelastic Solids

1School of Civil Engineering and Architecture, Henan University of Technology, Zhengzhou 450052, China
2State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China

Received 27 August 2012; Accepted 5 September 2012

Academic Editor: Igor Andrianov

Copyright © 2012 W. X. Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


With the use of the Laplace integral transformation and state space formalism, the classical axial symmetric quasistatic problem of viscoelastic solids is discussed. By employing the method of separation of variables, the governing equations under Hamiltonian system are established, and hence, general solutions including the zero eigensolutions and nonzero eigensolutions are obtained analytically. Due to the completeness property of the general solutions, their linear combinations can describe various boundary conditions. Simply by applying the adjoint relationships of the symplectic orthogonality, the eigensolution expansion method for boundary condition problems is given. In the numerical examples, stress distributions of a circular cylinder under the end and lateral boundary conditions are obtained. The results exhibit that stress concentrations appear due to the displacement constraints, and that the effects are seriously confined near the constraints, decreasing rapidly with the distance from the boundary.