A MULTIPLICITY RESULT FOR A QUASILINEAR
GRADIENT ELLIPTIC SYSTEM

ABDELAZIZ AHAMMOU

Received 9 November 2000 and in revised form 21 February 2001

The aim of this work is to establish the existence of infinitely many solutions to gradient elliptic system problem, placing only conditions on a potential function \( H \), associated to the problem, which is assumed to have an oscillatory behaviour at infinity. The method used in this paper is a shooting technique combined with an elementary variational argument. We are concerned with the existence of upper and lower solutions in the sense of Hernández.

1. Introduction

We prove the existence of infinitely many solutions for the following problem:

\[
\begin{align*}
-\Delta_p u &= f(x, u, v), \\
-\Delta_q v &= g(x, u, v) \\
\quad u &= v = 0 \\
\quad \text{in } \Omega, \\
\quad \text{on } \partial \Omega.
\end{align*}
\]

(1.1)

We assume that \( \Omega \) is a smooth bounded domain of \( \mathbb{R}^N \), \( N \geq 1 \), \( p, q > 1 \), and \( f, g : \Omega \times \mathbb{R}^2 \to \mathbb{R} \) be given functions which we specify later.

The prototype model (1.1) turns up in many mathematical settings as non-Newtonian fluids, population evolution, reaction-diffusion problems, porous media, and so forth. Much attention has been given to the existence of solutions of systems (1.1), by using different approaches. When (1.1) does not have a variational structure, we can notice the existence results obtained in [3, 4]. More recently, in [1], we derived the solvability of problem (1.1), under some lower limit conditions associated to \( F \) and \( G \), where

\[
F(x, u, v) = \int_0^u f(x, t, v) \, dt, \quad G(x, u, v) = \int_0^v g(x, u, s) \, ds.
\]

(1.2)
A multiplicity result for a quasilinear gradient elliptic system

When the system has a variational structure, that is, \( f = \partial H/\partial u \) and \( g = \partial H/\partial v \), the existence of solutions for (1.1) can be established via variational approaches, under appropriate conditions (cf. [5, 6, 7, 11]). An interesting result in this direction was obtained in [2]. By using variational methods, the authors show how the changes in the sign of \((\partial H/\partial u)(x,\cdot,\cdot)\) and \((\partial H/\partial v)(x,\cdot,\cdot)\) lead to multiple positive solutions of the system.

The goal of this paper is to show that the same approach in [1] can be applied to deal with the question of existence of infinitely many solutions for the following gradient system:

\[
-\Delta_p u = \frac{\partial H}{\partial u}(u,v) + h_1, \quad -\Delta_q v = \frac{\partial H}{\partial v}(u,v) + h_2 \quad \text{in } \Omega,
\]

\[
u = v = 0 \quad \text{on } \partial \Omega.
\]

(1.3)

Placing only some lower limit conditions on the potential function \( H \) associated to (1.3), which is assumed to have an oscillatory behaviour at infinity.

2. Main result

We make the following assumptions:

\[
\forall u \in \mathbb{R}, \quad \frac{\partial H}{\partial u}(u,\cdot) \text{ is an increasing function on } \mathbb{R}, \quad (2.1)
\]

\[
\forall v \in \mathbb{R}, \quad \frac{\partial H}{\partial v}(\cdot,v) \text{ is an increasing function on } \mathbb{R}, \quad (2.2)
\]

\[
\forall (u,v) \in \mathbb{R}^2, \quad \text{such that } u \cdot v \geq 0,
\]

(2.3)

we have

\[
H(u,v) \geq 0,
\]

(2.4)

\[
\lim \inf_{m \to +\infty} \frac{H(\varepsilon m^{1/p}, \varepsilon m^{1/q})}{m} < \mu_{p,q},
\]

(2.5)

\[
\lim \sup_{m \to +\infty} \frac{H(\varepsilon m^{1/p}, \varepsilon m^{1/q})}{m} = +\infty,
\]

(2.6)

where \( \varepsilon = 1, -1 \) and \( \mu_{p,q} = \min(\mu_p, \mu_q) \) such that \( \mu_p \) and \( \mu_q \) are the following constants:

\[
\mu_p = \frac{(p-1)}{p} \left[ \frac{2}{b-a} \int_0^1 \frac{ds}{\sqrt{1-s^p}} \right]^p,
\]

\[
\mu_q = \frac{(q-1)}{q} \left[ \frac{2}{b-a} \int_0^1 \frac{dt}{\sqrt{1-t^q}} \right]^q,
\]

(2.7)
with \( b - a = \min(b_i - a_i) \) and \( P = \Pi[a_i, b_i] \) is the smallest cube such that \( P \supset \Omega \). Observe that for \( N = 1, p \mu_p \) and \( q \mu_q \) are the first eigenvalue of \(-\Delta_p \) and \(-\Delta_q \), respectively, when \( \Omega = [a, b] \).

**Example 2.1.** The function \( H \) such that

\[
H(u, v) = (\sin |u|^p)^2 |u|^\alpha + (\sin |v|^q)^2 |v|^\beta
\]

satisfies the hypotheses (2.1), (2.3), (2.5), and (2.6), when \( \alpha > p \) or \( \beta > q \).

The main result of this paper is the following statement.

**Theorem 2.2.** Under the assumptions (2.1), (2.3), (2.5), and (2.6), problem (1.3) has two sequences \((u_n, v_n)\) and \((u_0, v_0)\) solutions in \((W^{1,p}_0(\Omega) \times W^{1,q}_0(\Omega)) \cap (L^{+\infty}(\Omega) \times L^{+\infty}(\Omega))\) for any \((h_1, h_2)\) in \( L^{+\infty}(\Omega) \times L^{+\infty}(\Omega) \), and satisfy

\[
\max \left( \sup_{\Omega} u_n, \sup_{\Omega} v_n \right) \to +\infty, \quad \min \left( \inf_{\Omega} u_n, \inf_{\Omega} v_n \right) \to -\infty.
\]

The method used in this paper is a shooting technique combined with an elementary variational argument. We will be concerned with the existence of a sequence of negative subsolutions \((u_{0n}, v_{0n})\) and a sequence of nonnegative supersolutions \((u^0_n, v^0_n)\), in the sense of Hernández’s definition [7], which are both of class \( C^1 \) and satisfy

\[
+\infty \leftarrow \min_{\Omega} u^0_n \geq \max_{\Omega} u_{0n} \to -\infty, \quad (2.10)
\]

\[
+\infty \leftarrow \min_{\Omega} v^0_n \geq \max_{\Omega} v_{0n} \to -\infty.
\]

### 3. Construction of a sequence of super-sub-solutions

**Definition 3.1.** A pair \([u_0, v_0], (u^0, v^0)\) is a weak sub-supersolution for the Dirichlet problem (1.3), if the following conditions are satisfied:

\[
(u_0, v_0) \in (W^{1,p}(\Omega) \times W^{1,q}(\Omega)) \cap (L^{+\infty}(\Omega) \times L^{+\infty}(\Omega)),
\]

\[
(u^0, v^0) \in (W^{1,p}(\Omega) \times W^{1,q}(\Omega)) \cap (L^{+\infty}(\Omega) \times L^{+\infty}(\Omega)),
\]

\[
-\Delta_p u_0 - f(x, u_0, v) \leq 0 \leq -\Delta_p u^0 - f(x, u^0, v) \quad \text{in } \Omega, \quad \forall v \in [v_0, v^0],
\]

\[
-\Delta_q v_0 - f(x, u, v_0) \leq 0 \leq -\Delta_q v^0 - f(x, u, v^0) \quad \text{in } \Omega, \quad \forall u \in [u_0, u^0],
\]

\[
u_0 \leq v^0 \quad \text{in } \Omega,
u_0 \leq 0 \leq v^0 \quad \text{on } \partial \Omega.
\]
A multiplicity result for a quasilinear gradient elliptic system

Similar definitions can be found in Diaz and Herrero [8]. For all $M > 0$, we note that

$$\hat{H}(u, v) = H(u, v) + M(v + u).$$  \hspace{1cm} (3.2)

Notice that if $H$ satisfies assumption (2.5) then the same holds for $\hat{H}$.

**Proposition 3.2.** Under hypotheses (2.3) and (2.5) there exist the sequences $d_n$, $d'_n$, $m_n$, and $m'_n$ such that

(a) $m_n^{1/p} \geq d_n \geq 0$, $\forall n \in \mathbb{N}$,

$$\limsup \int_{d_n}^{d_{n+1}} \frac{ds}{\sqrt{1 - s^p}} [p \mu_p]^{-1/p}$$

and such that for all $n \in \mathbb{N}$ we have

$$\lim_{n \to +\infty} \frac{d_n}{d_{n+1}} = 0.$$  \hspace{1cm} (3.3)

(b) $m'_n^{1/q} \geq d'_n \geq 0$, $\forall n \in \mathbb{N}$ we have

$$\limsup \int_{d'_n}^{d'_{n+1}} \frac{dt}{\sqrt{1 - t^q}} [q \mu_q]^{-1/q}$$

and such that for all $n \in \mathbb{N}$ we have

$$\lim_{n \to +\infty} \frac{d'_n}{d'_{n+1}} = 0.$$  \hspace{1cm} (3.4)

**Proof.** We only prove (a); the proof of (b) is similar.

1. Let a fixed real $d > 0$. Under the hypothesis (2.5), there exists some number $\mu > 0$ such that

$$\lim_{m \to +\infty} \inf \frac{\mu \hat{H}(m^{1/p}, m^{1/q})}{m} < \mu < p \mu_{p,q} \leq p \mu_p,$$  \hspace{1cm} (3.7)

then there exists some sequence $\{m_k\}_k$ such that

$$\lim_{k \to +\infty} \mu m_k - p \hat{H}(m_k^{1/p}, m_k^{1/q}) = +\infty.$$  \hspace{1cm} (3.8)

2. We consider the sequence of functions $[F(\cdot, m_k)]_k$, where

$$F(s, m_k) = \mu s - p \hat{H}(s^{1/p}, m_k^{1/q}).$$  \hspace{1cm} (3.9)

Hence from (3.8), for $k > 0$ sufficiently large, we have
\[ F(m_k, m_k) = \mu m_k - \hat{p}H(m_k^{1/p}, m_k^{1/q}) > 0. \]  
(3.10)

Then for all \( k \in \mathbb{N} \) there exists \( d_k > 0 \) satisfying \( d_k^p \in [d^p, m_k] \) and such that for all \( s \in [d^p, m_k] \), we have

\[ F(s, m_k) \leq F(d_k^p, m_k), \]  
(3.11)

that is,

\[ \mu s - \hat{p}H(s^{1/p}, m_k^{1/q}) \leq \mu d_k^p - \hat{p}H(d_k, m_k^{1/q}), \]  
(3.12)

then

\[ \hat{p}H(d_k, m_k^{1/q}) - \hat{p}H(s^{1/p}, m_k^{1/q}) \leq \mu (d_k^p - s). \]  
(3.13)

Thus, from (2.3) and (3.11), we get

\[ F(m_k, m_k) \leq F(d_k^p, m_k) \leq d_k. \]  
(3.14)

Hence, from (3.8) and (3.14), we obtain

\[ \lim_{k \to +\infty} d_k = +\infty. \]  
(3.15)

Let \( s = \omega^p \), where \( \omega \in [d, d_k] \subset [d, m_k^{1/p}] \), we obtain

\[ \hat{p}H(d_k, m_k^{1/q}) - \hat{p}H(\omega, m_k^{1/q}) \leq \mu (d_k^p - \omega^p), \]  
(3.16)

that is,

\[ \frac{1}{\sqrt{d_k^p - \omega^p}} \mu^{-1/p} \leq \frac{1}{\sqrt{\hat{p}H(d_k, m_k^{1/q}) - \hat{p}H(\omega, m_k^{1/q})}}. \]  
(3.17)

Then integrating on \([d, d_k]\), we obtain that for all \( k > 0 \), \((d, d_k, m_k)\) satisfies

\[ \int_d^{d_k} \frac{d\omega}{\sqrt{\omega^p}} \mu^{-1/p} \leq \int_d^{d_k} \frac{d\omega}{\sqrt{\hat{p}H(d, m_k^{1/q}) - \hat{p}H(\omega, m_k^{1/q})}}. \]  
(3.18)

Consequently, for \( d = d_0 \), there exist \( k_0 \) sufficiently large, \( d_{k_0} \), and \( m_{k_0} \) such that \((d_0, d_{k_0}, m_{k_0})\) satisfies (3.18) and \( d_0/d_{k_0} \leq 1/k_0 \). Now, let \( d = d_{k_0} \), then there exist \( k_1 \) sufficiently large, \( d_{k_1} \), and \( m_{k_1} \) such that \((d_{k_0}, d_{k_1}, m_{k_1})\) satisfies (3.18), and \( d_{k_0}/d_{k_1} \leq 1/k_1 \). By iteration there exist some subsequences of \((d_k)_k\) and \((m_k)_k\), respectively, denoted \( d_n := d_{k_n} \) and \( m_n := m_{k_n} \) such that for all \( n \in \mathbb{N} \), \((d_n, d_{n+1}, m_{n+1})\) satisfies (3.18) and \( d_n/d_{n+1} \leq 1/k_n \). Hence,

\[ \lim_{n \to +\infty} \frac{d_n}{d_{n+1}} = 0. \]  
(3.19)
Thus, from (3.18), we have
\[ \int_0^1 \frac{d\omega}{\sqrt{1-\omega^p}}[\mu]^{-1/p} \leq \lim \sup_{d_n} \int_{d_n}^{d_{n+1}} \frac{d\omega}{p\hat{H}(d_{n+1}, m_{n+1}^{1/q}) - p\hat{H}(\omega, m_{n+1}^{1/q})}. \]  
(3.20)

This is the conclusion of Proposition 3.2. \( \square \)

**Remark 3.3.** We observe that
\[ \sqrt{p-1} \int_0^1 \frac{ds}{\sqrt{1-s^p}}[p\mu_p]^{-1/p} = q^{1-1/p} \int_0^1 \frac{dt}{\sqrt{1-t^q}}[q\mu_q]^{-1/q} = b - a. \]  
(3.21)

Consequently,
\[ \frac{b - a}{2} < \lim \sup_{d_n} \int_{d_n}^{d_{n+1}} \frac{d\omega}{p\hat{H}(d_{n+1}, m_{n+1}^{1/q}) - p\hat{H}(\omega, m_{n+1}^{1/q})}. \]  
(3.22)

### 3.1. Construction of a sequence of supersolutions \( \{(u_n^0, v_n^0)\}_{n>1} \)

**Proposition 3.4.** Suppose that \( (d_n)_n \) and \( (m_n)_n \) satisfy Proposition 3.2, and that for all \( n \in \mathbb{N} \) we have
\[ \inf_{s \in [d_{n-1}^{1/p}, m_{n+1}^{1/p}]} \frac{\partial H}{\partial u}(s, m_{n+1}^{1/q}) + M \geq 0. \]  
(3.23)

Then, there exists some \( n_0 \in \mathbb{N} \) such that for all \( n \geq n_0 \) the following problem:
\[ -(|u'|^{p-2}u')' = \frac{\partial H}{\partial u}(u, m_n^{1/q}) + M \quad \text{in} \quad (a, b), \]
\[ u(a) = d_n, \quad u'(a) = 0 \quad \text{on} \quad [a, b], \]  
(3.24)

has a solution \( \hat{u}_n \) satisfying \( \hat{u}_n \in C^1([a, b]), \ (|\hat{u}_n'|^{p-2}\hat{u}_n')' \in C([a, b]), \) with \( m_n^{1/p} \geq \hat{u}_n \geq d_{n-1} \) for all \( n \in \mathbb{N} \) and
\[ 0 < \hat{u}_0 < \cdots < \hat{u}_n < \hat{u}_{n+1} < \cdots + \infty. \]  
(3.25)

**Proof.** Assume that \( (d_n)_n \) and \( (m_n)_n \), the sequences defined in Proposition 3.2, satisfy (3.23).

Step 1. We define the functions
\[ \varphi_p(s) := \text{sign}(s)|s|^{p-1}, \]
\[ \psi_p^*(s) := \int_0^s \varphi_p^{-1}(t)dt = \int_0^s \text{sign}(t)|t|^{1/(p-1)}dt = \frac{p-1}{p}|s|^{p/(p-1)}. \]  
(3.26)
Now, we consider the initial value problem

\[-(\phi_n(u'))' = \left( \frac{\partial H}{\partial u}(u, m_n^{1/q}) + M \right),\]  
\[u(a) = d_n, \quad u'(a) = 0,\]  
(3.27)

where \(m_n^{1/p} > d_{n-1}.\)

Since problem (3.27) is equivalent to the system

\[u' = \varphi_{p}^{-1}(v), \quad v' = -\left( \frac{\partial H}{\partial u}(u, m_n^{1/q}) + M \right),\]  
(3.28)

with initial conditions

\[u(a) = d_n, \quad v(a) = 0,\]  
(3.29)

it follows that the existence of a solution \(u_n\) of (3.27) and its continuity on the same maximal interval are standard facts (see [1]). We set

\[t_n := \sup \{ t \in [a, b), \text{ such that } u_n \text{ is defined and } u_n > d_{n-1} \text{ on } [a, t) \}.\]  
(3.30)

Of course, it is \(t_n > a.\) Integrating (3.27) on \([a, t],\) for any \(t \in ]a, t_n[\), we obtain that

\[\varphi_p(u_n'(t)) = \varphi_p(u_n'(a)) - \int_a^t \left( \frac{\partial H}{\partial u}(u_n(s), m_n^{1/q}) + M \right) ds.\]  
(3.31)

Hence, from (3.23), we get

\[u_n'(t) \leq 0.\]  
(3.32)

This implies that \(u_n' = \varphi_{p}^{-1}(v_n)\) is of class \(C^1\) on \([a, t_n[.\) So that \(\varphi_p(u_n') = -|u_n'|^{p-1}\) can be differentiated.

Assume now by contradiction that \(t_n < \frac{b + a}{2}.\)

By (3.32) there exists

\[\lim_{t \to t_n^-} u_n(t) = d_{n-1}.\]  
(3.34)

Hence, we can denote

\[u_n(t_n) := d_{n-1},\]  
(3.35)

and hence \(u_n\) can be continued as a solution to \(t_n.\)

Accordingly, multiplying (3.27) by \(u_n',\) we obtain
\[
\frac{p-1}{p} \left(-|u'_n(t)|^p\right)' = \frac{d}{dt} \left(\hat{H}(u_n(t), m_n^{1/q})\right),
\]

(3.36)

where

\[
\hat{H}(u, v) = H(u, v) + Mu.
\]

(3.37)

Integrating (3.36) on \([a, t] \subset [a, t_n]\), we obtain

\[
-\sqrt[p]{p} u'_n(t) = \sqrt[p]{p} \frac{-u'_n(t)}{p^{\hat{H}(d_n, m_n^{1/q})} - p^{\hat{H}(u_n(t), m_n^{1/q})}}.
\]

(3.38)

Integrating again (3.38) on \([a, t_n]\), we deduce that

\[
\sqrt[p]{p} \int_a^{t_n} -u'_n(t) \frac{dt}{p^{\hat{H}(d_n, m_n^{1/q})} - p^{\hat{H}(u_n(t), m_n^{1/q})}} \leq t_n - a.
\]

(3.39)

Then we obtain

\[
\sqrt[p]{p} \int_{d_{n-1}}^{d_n} \frac{ds}{p^{\hat{H}(d_n, m_n^{1/q})} - p^{\hat{H}(s, m_n^{1/q})}} \leq t_n - a.
\]

(3.40)

It follows from Proposition 3.2 and Remark 3.3 that for all \(n \geq n_0\), we have

\[
\frac{b-a}{2} < \sqrt[p]{p} \int_{d_{n-1}}^{d_n} \frac{ds}{p^{\hat{H}(d_n, m_n^{1/q})} - p^{\hat{H}(s, m_n^{1/q})}} \leq t_n - a.
\]

(3.41)

This implies that \(t_n > (b+a)/2\). Hence we obtain a contradiction.

This shows that, there exits a sequence \(\{u_n\}_n\) satisfying for all \(n \geq n_0\),

\[
u_n \in C^1 \left([a, \frac{a+b}{2}]\right), \quad \left(|u'_n|^{p-2} u'_n\right)' \in C \left([a, \frac{a+b}{2}]\right),
\]

(3.42)

\[
\left(|u'_n|^{p-2} u'_n\right)'(t) = \frac{\partial H}{\partial u}(u_n(t), m_n^{1/q}) + M \quad \text{in} \quad \left[a, \frac{a+b}{2}\right],
\]

\[
m_n^{1/p} \geq u_n \geq d_{n-1} \quad \text{in} \quad \left[a, \frac{a+b}{2}\right], \quad u'_n(a) = 0.
\]

Step 2. We note by \(\{\hat{u}_n\}_n\) the following functions such that

\[
\hat{u}_n(t) = \begin{cases} 
u_n \left(\frac{3a+b}{2} - t\right) & \text{if} \ t \in \left[a, \frac{a+b}{2}\right], \\ 
u_n \left(t - \frac{b-a}{2}\right) & \text{if} \ t \in \left[\frac{a+b}{2}, b\right]. \end{cases}
\]

(3.43)
It is a trivial matter to claim that the sequence \( \{\hat{u}_n\}_n \) satisfies
\[
\forall n \geq n_0, \quad \hat{u}_n \in C^1([a,b]), \quad \left( |\hat{u}_n'|^{p-2} \hat{u}_n'' \right)' \in C([a,b]),
\]
\[
-\left( |\hat{u}_n'|^{p-2} \hat{u}_n'' \right)'(t) = \frac{\partial H}{\partial u}(\hat{u}_n(t), m_n^{1/q}) + M \quad \text{in } [a,b], \tag{3.44}
\]
\[
m_n^{1/p} \geq \hat{u}_n \geq d_{n-1} \quad \text{in } [a,b],
\]
moreover, we have
\[
0 < \cdots < \hat{u}_n < \hat{u}_{n+1} < \cdots, \quad \sup_{[a,b]} \hat{u}_n = d_n \longrightarrow +\infty. \tag{3.45}
\]
Hence, Proposition 3.4 is proved. \(\square\)

**Proposition 3.5.** Let \( M > 0 \). Under the hypothesis (2.3) and (2.5) there exists some sequence of the positive numbers \((m_n)_n\) such that there exists \((\hat{u}_n, \hat{v}_n) \in (C^1([a,b]))^2\) satisfying
\[
\left( \left( |\hat{u}_n'|^{p-2} \hat{u}_n'' \right)', \left( |\hat{v}_n'|^{q-2} \hat{v}_n'' \right) \right) \in (C[a,b])^2,
\]
\[
-\left( |\hat{u}_n'|^{p-2} \hat{u}_n'' \right)' \geq \frac{\partial H}{\partial u}(\hat{u}_n, m_n^{1/q}) + M \quad \text{a.e. in } (a,b),
\]
\[
-\left( |\hat{v}_n'|^{q-2} \hat{v}_n'' \right)' \geq \frac{\partial H}{\partial v}(m_n^{1/p}, \hat{v}_n) + M \quad \text{a.e. in } (a,b), \tag{3.46}
\]
\[
m_n^{1/p} \geq \hat{u}_n \geq 0, \quad m_n^{1/q} \geq \hat{v}_n \geq 0 \quad \text{on } [a,b],
\]
\[
\max_{[a,b]} \hat{u}_n \leq \min_{[a,b]} \hat{u}_{n+1} \longrightarrow +\infty, \quad \max_{[a,b]} \hat{v}_n \leq \min_{[a,b]} \hat{v}_{n+1} \longrightarrow +\infty.
\]

**Proof.** Let \((d_n)\) and \((m_n)\) be as defined in Proposition 3.2. We study three cases.

**Case 1.** We suppose that for all \( n \in \mathbb{N} \), we have
\[
\inf_{s \in [d_{n-1}, m_n^{1/p}]} \frac{\partial H}{\partial u}(s, m_n^{1/q}) + M < 0, \tag{3.47}
\]
\[
\inf_{t \in [d_{n-1}, m_n^{1/q}]} \frac{\partial H}{\partial v}(m_n^{1/p}, t) + M < 0.
\]
Then, from (3.47) we get \( \forall n \in \mathbb{N} \), there exist \( s_n \in [d_{n-1}, m_n^{1/p}] \) and \( t_n \in [d_{n-1}, m_n^{1/q}] \) satisfying
\[
\frac{\partial H}{\partial u}(s_n, m_n^{1/q}) + M < 0, \quad \frac{\partial H}{\partial v}(m_n^{1/p}, t_n) + M < 0. \tag{3.48}
\]
Consequently, the sequence \((\hat{u}_n, \hat{v}_n) = (s_n, t_n)\) is a sequence of supersolutions satisfying
\[
\lim s_n = +\infty, \quad \lim t_n = +\infty. \tag{3.49}
\]

Case 2. Assume that for all \(n \in \mathbb{N}\), we have
\[
\inf_{s \in [d_{n-1}, m_n^{1/p}]} \frac{\partial H}{\partial u}(s, m_n^{1/q}) + M \geq 0, \tag{3.50}
\]
\[
\inf_{t \in [d_{n-1}', m_n^{1/q}]} \frac{\partial H}{\partial v}(m_n^{1/p}, t) + M < 0. \tag{3.51}
\]

(a) From (3.50) and Proposition 3.4, there exist some \(n_0 \in \mathbb{N}\) and some sequence \((\hat{u}_n)_n\) such that, for all \(n \geq n_0\), we have
\[
\hat{u}_n \in C^1([a, b]), \quad \left(\hat{u}'_n|_{p-2}\hat{u}'_n\right)' \in C([a, b]),
\]
\[
-\left(\hat{u}'_n|_{p-2}\hat{u}'_n\right)' \geq \frac{\partial H}{\partial u}(\hat{u}_n, m_n^{1/q}) + M \text{ a.e. in } (a, b), \tag{3.52}
\]
\[
m_n^{1/p} \geq \hat{u}_n \geq d_{n-1} \text{ in } [a, b].
\]

(b) From (3.51), there exists a sequence \((t_n)_n \geq n_0\) such that
\[
m_n^{1/p} \geq t_n \geq d_{n-1}', \quad \frac{\partial H}{\partial v}(m_n^{1/p}, t_n) + M < 0. \tag{3.53}
\]

Consequently, the sequence \((\hat{u}_n, t_n)_n\) satisfies the result.

Case 3. Assume that for all \(n \in \mathbb{N}\),
\[
\inf_{s \in [d_{n-1}, m_n^{1/p}]} \frac{\partial H}{\partial u}(s, m_n^{1/q}) + M \geq 0, \tag{3.54}
\]
\[
\inf_{t \in [d_{n-1}', m_n^{1/q}]} \frac{\partial H}{\partial v}(m_n^{1/p}, t) + M \geq 0. \tag{3.55}
\]

Then from Proposition 3.4, for all \(n \geq n_0\) there exists \((\hat{u}_n, \hat{v}_n) \in (C^1([a, b]))^2\) such that
\[
\left(\left(\hat{u}'_n|_{p-2}\hat{u}'_n\right)', \left(\hat{v}'_n|_{p-2}\hat{v}'_n\right)\right) \in (C[a, b])^2,
\]
\[
-\left(\hat{u}'_n|_{p-2}\hat{u}'_n\right)' \geq \frac{\partial H}{\partial u}(\hat{u}_n, m_n^{1/q}) + M \text{ a.e. in } (a, b), \tag{3.56}
\]
\[
-\left(\hat{v}'_n|_{p-2}\hat{v}'_n\right)' \geq \frac{\partial H}{\partial v}(m_n^{1/p}, \hat{v}_n) + M \text{ a.e. in } (a, b),
\]
\[
m_n^{1/p} \geq \hat{u}_n \geq 0, \quad m_n^{1/q} \geq \hat{v}_n \geq 0 \text{ on } [a, b],
\]
and the sequence \( \{(\hat{u}_n, \hat{v}_n)\}_n \) satisfies
\[
\max_{[a,b]} \hat{u}_n \leq \min_{[a,b]} \hat{u}_{n+1} \longrightarrow +\infty, \quad \max_{[a,b]} \hat{v}_n \leq \min_{[a,b]} \hat{v}_{n+1} \longrightarrow +\infty. \tag{3.57}
\]

This proves the results. \( \square \)

Now, for problem (1.3) we consider a smooth bounded domain \( \Omega \) in \( \mathbb{R}^N \), we have the following result.

**Proposition 3.6.** Under hypotheses (2.1), (2.3), and (2.5), problem (1.3) has a nonnegative sequence of supersolutions \( \{(u^0_n, v^0_n)\} \) in \( W^{1,p}(\Omega) \times W^{1,q}(\Omega) \) such that
\[
0 < \max_{\Omega} u^0_n \leq \min_{\Omega} u^0_{n+1} \longrightarrow +\infty, \quad 0 < \max_{\Omega} v^0_n \leq \min_{\Omega} v^0_{n+1} \longrightarrow +\infty. \tag{3.58}
\]

**Proof.** Let \( M \geq \|h_1\|_{\infty} + \|h_2\|_{\infty} \); \( P = \prod_{[a_i, b_i]} \) is a cube containing \( \Omega \) and
\[
b - a = \inf_{1 \leq i \leq N} b_i - a_i = b_1 - a_1. \tag{3.59}
\]

From Proposition 3.5, there exist \( (m_n)_n \) and \( (\hat{u}_n, \hat{v}_n) \) in \( W^{1,p}((a,b)) \times W^{1,q}((a,b)) \) such that
\[
- \left( |\hat{u}_n|^{p-2}\hat{u}_n \right)' \geq \frac{\partial H}{\partial u}(\hat{u}_n, m_n^{1/q}) + M \quad \text{a.e. in } (a,b),
\]
\[
- \left( |\hat{v}_n|^{q-2}\hat{v}_n \right)' \geq \frac{\partial H}{\partial v}(m_n^{1/p}, \hat{v}_n) + M \quad \text{a.e. in } (a,b),
\]
\[
m_n^{1/p} \geq \hat{u}_n \geq 0, \quad m_n^{1/q} \geq \hat{v}_n \geq 0 \quad \text{on } [a,b]. \tag{3.60}
\]

We denote by \( u^0_n \) and \( v^0_n \) the functions such that for all \( x \in \Omega \) with \( x = (x_1, x_2, \ldots, x_N) \),
\[
u^0_n(x) = \hat{v}_n(x_1), \quad v^0_n(x) = \hat{v}_n(x_1), \tag{3.61}
\]
\((u^0_n, v^0_n)\) is clearly in \( W^{1,p}(\Omega) \times W^{1,q}(\Omega) \), moreover by (2.1), we obtain easily, for all \( n \in \mathbb{N} \)
\[
-\Delta_p u^0_n \geq \frac{\partial H}{\partial u}(u^0_n, v) + h_1 \quad \text{for } v \leq v^0_n \text{ on } \Omega,
\]
\[
-\Delta q v^0_n \geq \frac{\partial H}{\partial v}(u, v^0_n) + h_2 \quad \text{for } u \leq u^0_n \text{ on } \Omega, \tag{3.62}
\]

Thus the result follows. \( \square \)
3.2. Construction of a sequence of subsolutions \( \{(u_{0n},v_{0n})\}_{n>1} \)

Similar to the construction of a sequence of supersolutions we can prove the following proposition.

Proposition 3.7. Under hypotheses (2.1), (2.3), and (2.6), problem (1.3) has a sequence of subsolutions \((u_{0n},v_{0n})_n\) in \(W^{1,p}(\Omega) \times W^{1,q}(\Omega)\), such that

\[
0 \geq \min_{\Omega} u_{0n} \geq \max_{\Omega} u_{0n+1} \rightarrow -\infty, \\
0 \geq \min_{\Omega} v_{0n} \geq \max_{\Omega} v_{0n+1} \rightarrow -\infty.
\]

(3.63)

4. Proof of Theorem 2.2

We closely follow an argument introduced in [11]. We define the functional

\[
\Phi : W^{1,p}_0 \times W^{1,q}_0 \rightarrow \mathbb{R}
\]

by setting

\[
\Phi(u,v) = \frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx + \frac{1}{q} \int_{\Omega} |\nabla u|^q \, dx - \int_{\Omega} H(u,v) \, dx.
\]

(4.2)

Claim 4.1. Let a lower solution \((u_0,v_0)\) and an upper solution \((u^0,v^0)\) of problem (1.3) satisfy \(u_0 \leq u^0\) and \(v_0 \leq v^0\) in \(\Omega\). Then, problem (1.3) has a solution \((u,v)\) belonging to \(C^{1,\sigma}\), for some \(\sigma > 0\), such that

\[
u_0 \leq u \leq u^0, \quad v_0 \leq v \leq v^0,
\]

with

\[
\Phi(u,v) = \min_{(w_1,w_2) \in K} \Phi(w_1,w_2),
\]

(4.3)

(4.4)

Proof. We argue as in [10]. By minimization of the functional associated with truncated system (1.3). The validity of a weak comparison principle (see [11]) gives the regularity of solutions. Consider the following problem:

\[
-\Delta_p u = \frac{\partial H}{\partial u}(x,u,v), \quad -\Delta_q v = \frac{\partial H}{\partial v}(x,u,v) \quad \text{in} \ \Omega,
\]

\[
u = 0, \quad \text{on} \ \partial \Omega,
\]

(4.5)

where

\[
\frac{\partial H}{\partial u}(x,u,v) = \frac{\partial H}{\partial u}(U,V) + h_1(x),
\]

\[
\frac{\partial H}{\partial v}(x,u,v) = \frac{\partial H}{\partial v}(U,V) + h_2(x),
\]

(4.6)
with
\[ U(x) = u(x) + (u^0 - u)_+ - (u - u^0)_+ \]
\[ V(x) = v(x) + (v^0 - v)_+ - (v - v^0)_+ \]
\[ (4.7) \]

**Minimization of the functional \( \Phi \) associated to (4.5)**

Denote by \( \Phi \) the functional associated to (4.5)
\[ \Phi(u,v) = \frac{1}{p} \int_\Omega |\nabla u|^p \, dx + \frac{1}{q} \int_\Omega |\nabla v|^q \, dx - \int_\Omega H(x,u,v) \, dx. \]
\[ (4.8) \]

It is easy to show that there exist some constants \( M_1 > 0 \) and \( M_2 > 0 \) such that
\[ |H(x,u,v)| \leq M_1 + M_2 [ |u| + |v| ] . \]
\[ (4.9) \]

Hence, the functional \( \Phi \) is weakly lower semicontinuous. It follows from a standard theorem in the calculus of variations (see Vainberg [9]) that \( \Phi \) attains its minimum at \((\bar{u}, \bar{v})\) solution of problem (4.5), that is,
\[ \min_{(w_1,w_2) \in W_{0}^{1,p} \times W_{0}^{1,q}} \Phi(w_1,w_2) = \Phi(\bar{u},\bar{v}). \]
\[ (4.10) \]

**Weak comparison principle**

We show, for example, that \( \bar{u} \leq u^0 \). From (4.7), we denote by \( \bar{U} \) and \( \bar{V} \) the functions associated to \( \bar{u} \) and \( \bar{v} \). Then we have
\[ 0 \geq -\Delta_p \bar{u} - \frac{\partial H}{\partial u}(x,\bar{u},\bar{v}) \geq \Delta_p \bar{u} - \frac{\partial H}{\partial u}(\bar{U},\bar{V}) - h_1(x) \]
\[ \geq [ -\Delta_p \bar{u} + \Delta_p u^0 ] + \left[ \frac{\partial H}{\partial u}(u^0,\bar{V}) - \frac{\partial H}{\partial u}(\bar{U},\bar{V}) \right] , \]
\[ (4.11) \]

multiplying (4.11) by \((\bar{u} - u^0)_+\) and integrating over \( \Omega \), we obtain
\[ 0 \geq \int_\Omega \left[ |\nabla \bar{u}|^{p-2} \nabla \bar{u} - |\nabla u^0|^{p-2} \nabla u^0 \right] \nabla (\bar{u} - u^0)_+ \, dx \]
\[ + \int_\Omega \left[ \frac{\partial H}{\partial u}(u^0,\bar{V}) - \frac{\partial H}{\partial u}(\bar{U},\bar{V}) \right] (\bar{u} - u^0)_+ \, dx. \]
\[ (4.12) \]

Denote by \( \Omega_+ \) the set
\[ \Omega_+ = \{ x \in \Omega ; \bar{u} - u^0 > 0 \} . \]
\[ (4.13) \]
We have \( \mathbb{U} = u^0 \) in \( \Omega_+ \). Then
\[
\int_\Omega \left[ \frac{\partial H}{\partial u}(u^0, \nabla) - \frac{\partial H}{\partial u}(\mathbb{U}, \nabla) \right] (\mathbb{U} - u^0)_+ \, dx = 0. \tag{4.14}
\]
By the monotonicity of \(-\Delta_p\) in \( L^p(\Omega) \) we get that \( 0 \geq \| (\mathbb{U} - u^0)_+ \|_{L^p(\Omega)} \).
Thus \( \mathbb{U} \leq u^0 \) on \( \Omega \) and similarly \( \mathbb{V} \leq v^0 \) on \( \Omega \). Then, we conclude that \( u_0 \leq \mathbb{U} \leq u^0 \) and \( v_0 \leq \mathbb{V} \leq v^0 \). Consequently, we obtain
\[
\phi(\mathbb{U}, \mathbb{V}) = \phi(\mathbb{U}, \mathbb{V}) = \min_{(w_1, w_2) \in K} \phi(w_1, w_2). \tag{4.15}
\]
This ends the proof of Claim 4.1.

\[\square\]

Proof of Theorem 2.2. We are in position to build a sequence \( \{(\mathbb{U}_n, \mathbb{V}_n)\}_n \) of solutions of (1.3) such that
\[
\max \left( \sup_{\Omega} \mathbb{U}_n, \sup_{\Omega} \mathbb{V}_n \right) \longrightarrow +\infty. \tag{4.16}
\]
Take an upper solution \( (u^0_1, v^0_1) \) and a lower solution \( (u_0, v_0) \) of (1.3). We get a solution \( (\mathbb{U}_1, \mathbb{V}_1) \) in \( C^{1,\sigma}(\Omega) \), for some \( \sigma > 0 \), of (1.3), with
\[
(\mathbb{U}_1, \mathbb{V}_1) \in [u_0, u^0_1] \times [v_0, v^0_1] = K_1, \quad \phi(\mathbb{U}_1, \mathbb{V}_1) = \min_{(w_1, w_2) \in K_1} \phi(w_1, w_2). \tag{4.17}
\]

Step 1. Let \( (\varphi, \psi) \in W_0^{1,p} \times W_0^{1,q} \) be positive in \( \Omega \), such that \( \varphi = 1 \) and \( \psi = 1 \) on \( \Omega_0 \subsetneq \Omega \), \( \varphi = \psi = 0 \), \( \partial \varphi / \partial \nu < 0 \), and \( \partial \psi / \partial \nu < 0 \), where \( \nu \) is the outer normal to \( \partial \Omega \). Moreover, from (2.5) there exists some positive sequence \( (s_n) \) such that
\[
\lim_{n \to +\infty} \frac{H(s_n^{1/p}, s_n^{1/q})}{s_n} = +\infty. \tag{4.18}
\]
Consequently, from (2.3), (4.18), and the definitions of \( \varphi \) and \( \psi \) we have
\[
\lim_{n \to +\infty} \Phi(s_n^{1/p} \varphi, s_n^{1/q} \psi) = -\infty \tag{4.19}
\]
with
\[
\Phi(s_n^{1/p} \varphi, s_n^{1/q} \psi) = \frac{s_n}{p} \| \varphi \|_{L^p}^p + \frac{s_n}{q} \| \psi \|_{L^q}^q - \int_\Omega H(s_n^{1/p} \varphi, s_n^{1/q} \psi). \tag{4.20}
\]
Step 2. Select a number, say $s_1$, such that
\[
\bar{u}_1 \leq s_1^{1/p} \varphi, \quad \bar{v}_1 \leq s_1^{1/q} \psi,
\]
\[
\Phi(s_1^{1/p} \varphi, s_1^{1/q} \psi) < \Phi(\bar{u}_1, \bar{v}_1). \tag{4.21}
\]

Now, take an upper solution $(u^0_2, v^0_2)$ such that $u^0_2 \geq s_1^{1/p} \varphi$ and $v^0_2 \geq s_1^{1/q} \psi$ in $\Omega$. We find a solution $(\bar{u}_2, \bar{v}_2)$ in $[\bar{u}_1, u^0_2] \times [\bar{v}_1, v^0_2] = K_2$ and
\[
\Phi(\bar{u}_2, \bar{v}_2) = \min_{(w_1, w_2) \in K_2} \phi(w_1, w_2). \tag{4.22}
\]

Thus, since
\[
\Phi(\bar{u}_2, \bar{v}_2) \leq \Phi(s_1^{1/p} \varphi, s_1^{1/q} \psi) < \Phi(u_1, v_1), \tag{4.23}
\]
we conclude that $(\bar{u}_2, \bar{v}_2) \neq (\bar{u}_1, \bar{v}_1)$,
\[
\max_{\Omega} \left( \max_{\Omega} \bar{u}_2, \max_{\Omega} \bar{v}_2 \right) \geq \min_{\Omega} \left( \min_{\Omega} u^0_1, \min_{\Omega} v^0_1 \right). \tag{4.24}
\]

Iterating this argument, we construct the required sequence of solutions of problem (1.3) such that
\[
\max_{\Omega} \left( \max_{\Omega} u_n, \max_{\Omega} v_n \right) \longrightarrow +\infty. \tag{4.25}
\]
In completely similar way we construct a sequence $\{(u_n, v_n)\}$ of solutions of problem (1.3) satisfying
\[
\min_{\Omega} \left( \inf_{\Omega} u_n, \inf_{\Omega} v_n \right) \longrightarrow -\infty. \tag{4.26}
\]

Hence, Theorem 2.2 is proved. \(\square\)

Acknowledgement
The author is most grateful to the referee for careful and constructive comments on an earlier version of this paper.

References
A multiplicity result for a quasilinear gradient elliptic system


Abdelaziz Ahammou: Département des Mathématiques et Informatique, Faculté des Sciences UCD, El Jadida, BP20, Morocco

E-mail address: ahammadou@ucd.ac.ma
Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>February 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>August 1, 2009</td>
</tr>
</tbody>
</table>

### Guests Editors

**José Roberto Castilho Piqueira**, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

**Elbert E. Neher Macau**, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

**Celso Grebogi**, Department of Physics, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk

---

Hindawi Publishing Corporation
http://www.hindawi.com