ITERATIONS CONVERGING TO DISTINCT SOLUTIONS
OF SOME NONLINEAR OPERATOR EQUATIONS IN BANACH SPACE

IOANNIS K. ARGYROS

Department of Mathematics
University of Iowa
Iowa City, IA 52242

(Received April 29, 1985 and in revised form April 18, 1986)

ABSTRACT. We examine the solvability of multilinear equations of the form
\[M_{k}(x,x,\ldots,x) = y, \quad k = 2,3,\ldots \]
where \(M_{k} \) is a \(k \)-linear operator on a Banach space \(X \) and \(y \in X \) is fixed.

KEY WORDS AND PHRASES. Multilinear operator, contraction.

1980 AMS SUBJECT CLASSIFICATION CODE. 46B15.

1. INTRODUCTION.

We study the quadratic equation
\[B(x,x) y (.) \]
in a Banach space \(X \), where \(B \) is a bounded symmetric bilinear operator on \(X \) and \(y \) is fixed in \(X \) \[2\], \[3\], \[7\], \[9\], \[10\]. We consider two cases.

CASE 1. Let \(y \neq 0 \) and set \(x = \bar{x} - h \) for some \(\bar{x} \) such that the linear operator \(2B(\bar{x}) \) is invertible then (1.1) becomes
\[B(h,h) = h - \bar{y} \]
where \(\bar{B} = (2B(\bar{x}))^{-1}B, \quad \bar{y} = (2B(\bar{x}))^{-1}B(\bar{x},\bar{x}) \) and \(h \in X \) is to be determined.

We introduce the iteration
\[h_{n+1} = (\bar{B}(h_{n}))^{-1}(h_{n} - \bar{y}) \quad \text{for some } \quad h_{0} \in X \]
(1.3)
to find a solution \(h \) of (1.2) such that \(h \neq \bar{x} \).

It turns out under certain assumptions that iteration (1.3) converges to an \(h \in X \) such that \(h \neq \bar{x} \), therefore \(x = \bar{x} - h \) is a nonzero solution of (1.1).

CASE 2. Let \(y \neq 0 \), we then introduce the iteration
\[x_{n+1} = B(x_{n})^{-1}(y) \quad \text{for some } \quad x_{0} \in X \]
(1.4)
to find solutions of (1.1).

The results obtained here can be generalized to include multilinear equations of the form
where M_k is a k-linear operator on X and y is fixed in X \[10\].

We now state the following lemma. The proof can be found in \[10\].

2. EXISTENCE THEORY.

Lemma 1. Let L_1 and L_2 be bounded linear operators in a Banach space X, where L_1 is invertible, and $\|L_1^{-1}\| \cdot \|L_2\| < 1$. Then $(L_1 + L_2)^{-1}$ exists, and

$$\|(L_1 + L_2)^{-1}\| \leq \frac{\|L_1^{-1}\|}{1 - \|L_2\| \cdot \|L_1^{-1}\|}.$$

Lemma 2. Let $z \neq 0$ be fixed in X. Assume that the linear operator $\overline{B}(z)$ is invertible then $\overline{B}(x)$ is also invertible for all $x \in U(z,r) = \{ x \in X \mid \|x-z\| < r \}$, where $r \in (0,r_0)$ and $r_0 = \left[\|\overline{B}\| \cdot \|\overline{B}(z)^{-1}\| \right]^{-1}$.

Proof. We have

$$\|\overline{B}(x-z)\| \cdot \|\overline{B}(z)^{-1}\| \leq \|\overline{B}\| \cdot \|x-z\| \cdot \|\overline{B}(z)^{-1}\|$$

$$\leq \|\overline{B}\| \cdot \|\overline{B}(z)^{-1}\| \cdot r$$

$$< 1$$

for $r \in (0,r_0)$. The result now follows from Lemma 1 for $L_1 = \overline{B}(z)$, $L_2 = \overline{B}(x-z)$ and $x \in U(z,r)$.

Definition 1. Assume that the linear operator $\overline{B}(z)$ is invertible.

Define the operators F, T on $U(z,r)$ for some $r > 0$ by

$$F(x) = \overline{B}(x,x) + \overline{y} - x, \quad T(x) = (\overline{B}(x))^{-1}(x-\overline{y})$$

and the real polynomials $f(r), g(r)$ on R by

$$f(r) = a'r^2 + b'r + c', \quad g(r) = ar^2 + br + c,$$

$$a' = (\|\overline{B}\| \cdot \|\overline{B}(z)^{-1}\|)^2,$$

$$b' = -2\|\overline{B}\| \cdot \|\overline{B}(z)^{-1}\|,$$

$$c' = 1 - \|\overline{B}(z)^{-1}\| - \|\overline{B}\| \cdot \|\overline{B}(z)^{-1}\|^2 \cdot \|z-\overline{y}\|,$$

$$a = \|\overline{B}\| \cdot \|\overline{B}(z)^{-1}\|,$$

$$b = \|\overline{B}(z)^{-1}(I-\overline{B}(z))\| - 1,$$

and

$$c = \|\overline{B}(z)^{-1}F(z)\|.$$
is well defined and it converges to a unique solution h of (1.2) in $\overline{U}(z,r)$ for any $h_0 \in \overline{U}(z,r)$.

PROOF. T is well defined by Lemma 2.

CLAIM 1. T maps $\overline{U}(z,r)$ into $\overline{U}(z,r)$.

If $x \in \overline{U}(z,r)$ then

$$T(x) - z = \overline{E}(x)^{-1}(x - y) - z$$

so

$$||T(x) - z|| \leq r$$

if

$$\frac{1}{1 - ||E|| \cdot ||E(z)^{-1}||} \left[||E(z)^{-1}(1 - \overline{E}(z))|| \cdot r + ||E(z)^{-1}F(z)|| \right] \leq r$$

(using Lemma 1 for $L_1 = \overline{E}(z)$ and $L_2 = \overline{E}(x-z)$) or $g(r) \leq 0$ which is true by hypothesis.

CLAIM 2. T is a contraction operator on $\overline{U}(z,r)$.

If $w, v \in \overline{U}(z,r)$ then

$$||T(w) - T(v)||$$

$$= ||\overline{E}(w)^{-1}(w - \overline{E}(v)^{-1}(v - y))||$$

$$= ||\overline{E}(w)^{-1}(1 - \overline{E}(\overline{E}(v)^{-1}(v - y))(w - v))||$$

$$= \frac{1}{1 - ||E|| \cdot ||E(z)^{-1}||} \left[||E(z)^{-1}|| + ||E|| \cdot ||E(z)^{-1}||^2 \cdot r + \frac{||E|| \cdot ||E(z)^{-1}||^2 \cdot ||y - z||}{||E|| \cdot ||E(z)^{-1}|| \cdot r} \right] \cdot ||w - v||$$

$$= q \cdot ||w - v||$$

So T is a contraction on $\overline{U}(z,r)$ if $0 < q < 1$, where

$$q = \frac{1}{1 - ||E|| \cdot ||E(z)^{-1}|| \cdot r} \left[||E(z)^{-1}|| + ||E|| \cdot ||E(z)^{-1}||^2 \cdot r + \frac{||E|| \cdot ||E(z)^{-1}||^2 \cdot ||y - z||}{||E|| \cdot ||E(z)^{-1}|| \cdot r} \right]$$

which is true since $f(r) > 0$.

THEOREM 2. Assume that there exist $r > 0$, $z, \overline{x} \in \overline{X}$ satisfying the hypotheses of Theorem 1 and

(a) $0 < ||\overline{x}|| < -1 + \sqrt{1 + 4 ||E|| ||y||}$;

(b) $r + ||z|| < \frac{||y||}{1 + ||E|| \cdot ||\overline{x}||}$

then if $||\overline{x}|| < h_0 = r + ||z||$, the solution h if (1.2) is such that

$$||\overline{x}|| < ||h|| \leq r + ||z||$$

Moreover, $x = \overline{x} - h$ is a nonzero solution of (1.1).

PROOF. By Theorem 1 $h \in \overline{U}(z,r)$ therefore

$$||h|| \leq r + ||z||.$$
Assume that \(\| x_k \| > \| x \| \) for \(k = 0,1,2,\ldots,n \). By iteration (1.3) we have
\[
B(h_{n+1}, h_n) = h_n - y
\]
or
\[
\| B \| \| x_{n+1} \| \cdot \| h_n \| \geq \| x_n - y \| \geq \| y \| - \| h_n \|
\]
so
\[
\| h_{n+1} \| \geq \frac{\| y \| - \| h_n \|}{\| B \| \cdot \| h_n \|},
\]
to show that
\[
\| h_{n+1} \| > \| x \|,
\]
it suffices to show
\[
\frac{\| y \| - \| h_n \|}{\| B \| \cdot \| h_n \|} > \| x \|
\]
which is true by (b). For consistency we must have
\[
\| x \| < \frac{\| y \|}{1 + \| B \| \cdot \| x \|}
\]
which is true by (a). The result now follows by taking the limit as \(n \to \infty \) in (2.1).

Finally note that since \(\| h \| > \| x \| \), \(x - h \neq 0 \) therefore \(x = x - h \) is a non-zero solution of (1.1).

DEFINITION 2. Assume that the linear operator \(B(z) \) is invertible for some \(z \in X \). Define the operator \(\overline{P} \) on \(U(z,r) \) for some \(r > 0 \) by
\[
\overline{P}(x) = B(x,x) - y, \quad y \neq 0
\]
and the real polynomials \(\overline{f}(r), \overline{g}(r) \) on \(\mathbb{R} \) by
\[
\overline{f}(r) = s_1 r^2 + s_2 r + s_3, \quad \overline{g}(r) = s_1 r^2 + s_2 r + s_3,
\]
where
\[
\begin{align*}
s_1' &= (\| B \| \cdot \| B(z)^{-1} \|)^2 \\
s_2' &= -2\| B \| \cdot \| B(z)^{-1} \| \\
s_3' &= 1 - \| B \| \cdot \| B(z)^{-1} \| \\
s_1 &= \| B \| \cdot \| B(z)^{-1} \| \\
s_2 &= \| B \| \\
s_3 &= \| B(z)^{-1} \|.
\end{align*}
\]

The proofs of the following theorems are omitted as similar to Theorems 1 and 2.

THEOREM 3. Let \(z \in X \) be such that the linear operator \(B(z) \) is invertible and that the following are true:

\(a) \) \(s_3' > 0; \)
\(b) \) \(s_2 > 0, \ s_2 - 4s_1 s_2 > 0, \) and
\(c) \) there exists \(r > 0 \) such that \(\overline{f}(r) > 0 \) and \(\overline{g}(r) \leq 0 \)
then the iteration
\[x_{n+1} = B(x_n)^{-1}(y) \]
for some \(x_0 \in X \) is well defined and it converges to a solution \(x \) of (1.1) which is unique in \(\overline{U}(z,r) \) for any \(x_0 \in \overline{U}(z,r) \).

THEOREM 4. Let \(z,r \) be such that the hypotheses of Theorem 3 are satisfied. Let \(p < q \) be positive numbers such that

\[a) \quad p \|B\| \leq \|y\| ; \]
\[b) \quad \frac{\|B(z)^{-1}\|}{1 - \|B\| \cdot \|B(z)^{-1}\| r} \leq q \leq r + \|z\| \]

then if \(p \leq \|x_0\| \leq q \) then the solution \(x \) of (1.1) is such that
\[p \leq \|x\| \leq q. \]

REFERENCES

Special Issue on Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/ade/guidelines.html. Authors should follow the Advances in Difference Equations manuscript format described at the journal site http://www.hindawi.com/journals/ade/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>April 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>October 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Alberto Cabada, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinar, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; mvictoria.otero@usc.es