Let (X,d) denote a locally connected, connected separable metric space. We say the X is S-metrizable provided there is a topologically equivalent metric ρ on X such that (X,ρ) has Property S, i.e. for any ϵ>0, X is the union of finitely many connected sets of ρ-diameter less than ϵ. It is well-known that S-metrizable spaces are locally connected and that if ρ is a Property S metric for X, then the usual metric completion (X˜,ρ˜) of (X,ρ) is a compact, locally connected, connected metric space, i.e. (X˜,ρ˜) is a Peano compactification of (X,ρ). There are easily constructed examples of locally connected connected metric spaces which fail to be S-metrizable, however the author does not know of a non-S-metrizable space (X,d) which has a Peano compactification. In this paper we conjecture that: If (P,ρ) a Peano compactification of (X,ρ|X), X must be S-metrizable. Several (new) necessary and sufficient for a space to be S-metrizable are given, together with an example of non-S-metrizable space which fails to have a Peano compactification.