A COMMON UNIQUE FIXED POINT THEOREM FOR TWO RANDOM OPERATORS IN HILBERT SPACES

BINAYAK S. CHOUDHURY

Received 10 July 2000

We construct a sequence of measurable functions and consider its convergence to the unique common random fixed point of two random operators defined on a nonempty closed subset of a separable Hilbert space. The corresponding result in the nonrandom case is also obtained.

2000 Mathematics Subject Classification: 47H10.

1. Introduction. In recent years, the study of random fixed points have attracted much attention, some of the recent literatures in random fixed points may be noted in [1, 2, 3, 7, 8, 9]. In particular, random iteration schemes leading to random fixed points of random operators have been discussed in [3, 4, 5]. In the present paper, we work out a common random fixed point theorem for two random operators defined on a nonempty closed subset of a separable Hilbert space. For the purpose of obtaining the random fixed point of the two random operators we have constructed a sequence of measurable functions and have shown its convergence to the fixed point.

We first review the following concepts which are essentials for our study in this paper.

Throughout this paper, \((\Omega, \Sigma)\) denotes a measurable space, \(H\) stands for a separable Hilbert space, and \(C\) is a nonempty subset of \(H\).

A function \(f : \Omega \rightarrow C\) is said to be measurable if \(f^{-1}(B \cap C) \in \Sigma\) for every Borel subset \(B\) of \(H\). A function \(f : \Omega \times C \rightarrow C\) is said to be a random operator, if \(F(t, \cdot) : \Omega \rightarrow C\) is measurable for every \(x \in C\). A measurable function \(g : \Omega \rightarrow C\) is said to be a random fixed point of the random operator \(F : \Omega \times C \rightarrow C\), if \(F(t, g(t)) = g(t)\) for all \(t \in \Omega\). A random operator \(F : \Omega \times C \rightarrow C\) is said to be continuous if for fixed \(t \in \Omega\), \(F(t, \cdot) : C \rightarrow C\) is continuous.

CONDITION 1.1. Two mappings \(S, T : C \rightarrow C\), where \(C\) is a nonempty subset of a Hilbert space \(H\), is said to satisfy **Condition 1.1** if

\[
\|Sx - Ty\|^2 \leq a\|x - y\|^2 + b(\|x - Sx\|^2 + \|y - Ty\|^2) + \frac{c}{2}(\|x - Ty\|^2 + \|y - Sx\|^2),
\]

where

\[
0 < a + 2b + 2c < 1, \quad a, b, c > 0.
\]
It is well known that in a Hilbert space the parallelogram law is satisfied, that is,
\[\forall x, y \in C, \quad \|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2. \] (1.3)

We construct a sequence of functions \(\{g_n\} \) as
\[g_0 : \Omega \rightarrow C \] (1.4)
is arbitrary measurable function. For \(t \in \Omega \) and \(n = 0, 1, 2, \ldots, \)
\[g_{2n+1}(t) = S(t, g_{2n}(t)), \quad g_{2n+2}(t) = T(t, g_{2n+1}(t)). \] (1.5)

2. Main results. In this section, we prove a common unique fixed point theorem for two random operators in Hilbert spaces.

Theorem 2.1. Let \(C \) be a nonempty closed subset of a separable Hilbert space \(H \). Let \(S \) and \(T \) be two continuous random operators defined on \(C \) such that for \(t \in \Omega \), \(S(t, \cdot), T(t, \cdot) : C \rightarrow C \) satisfy Condition 1.1. Then the sequence \(\{g_n\} \) obtained in (1.4) and (1.5) converges to the unique common random fixed point of \(S \) and \(T \).

Proof. For fixed \(t \in \Omega, n = 1, 2, \ldots, \)
\[\|g_{2n+1}(t) - g_{2n}(t)\|^2 = \|S(t, g_{2n}(t)) - T(t, g_{2n-1}(t))\|^2 \leq a\|g_{2n}(t) - g_{2n-1}(t)\|^2 \]
\[+ b\left(\|g_{2n}(t) - S(t, g_{2n}(t))\|^2 + \|g_{2n-1}(t) - T(t, g_{2n-1}(t))\|^2\right) \]
\[+ \frac{c}{2} \left(\|g_{2n}(t) - T(t, g_{2n-1}(t))\|^2 + \|g_{2n-1}(t) - S(t, g_{2n}(t))\|^2\right) \]
\[= a\|g_{2n-1}(t) - g_{2n}(t)\|^2 \]
\[+ b\left(\|g_{2n}(t) - g_{2n+1}(t)\|^2 + \|g_{2n-1}(t) - g_{2n}(t)\|^2\right) \]
\[+ \frac{c}{2} \left(\|g_{2n}(t) - g_{2n}(t)\|^2 + \|g_{2n-1}(t) - g_{2n+1}(t)\|^2\right) \]
\[= a\|g_{2n}(t) - g_{2n-1}(t)\|^2 \]
\[+ b\left(\|g_{2n}(t) - g_{2n+1}(t)\|^2 + \|g_{2n-1}(t) - g_{2n}(t)\|^2\right) \]
\[+ \frac{c}{2} \left(\|g_{2n-1}(t) - g_{2n}(t) + (g_{2n}(t) - g_{2n+1}(t))\|^2\right) \]
\[= a\|g_{2n}(t) - g_{2n-1}(t)\|^2 \]
\[+ b\left(\|g_{2n}(t) - g_{2n+1}(t)\|^2 + \|g_{2n-1}(t) - g_{2n}(t)\|^2\right) \]
\[+ \frac{c}{2} \left(\|g_{2n-1}(t) - g_{2n}(t) + (g_{2n}(t) - g_{2n+1}(t))\|^2\right) \]
\[\text{(by parallelogram law (1.3))} \]
\[\leq (a + b + c)\|g_{2n}(t) - g_{2n-1}(t)\|^2 \]
\[+ (b + c)\|g_{2n}(t) - g_{2n+1}(t)\|^2. \] (2.1)
Therefore,

$$\left\| g_{2n+1}(t) - g_{2n}(t) \right\|^2 \leq \frac{a + b + c}{1 - b - c} \left\| g_{2n}(t) - g_{2n-1}(t) \right\|^2. \quad (2.2)$$

For \(t \in \Omega, n = 1, 2, 3, \ldots, \)

$$\left\| g_{2n}(t) - g_{2n-1}(t) \right\|^2 = \left\| T(t, g_{2n-1}(t)) - S(t, g_{2n-2}(t)) \right\|^2$$

$$= a \left\| g_{2n-2}(t) - g_{2n-1}(t) \right\|^2$$

$$+ b \left(\left\| g_{2n-1}(t) - T(t, g_{2n-1}(t)) \right\|^2 + \left\| g_{2n-2}(t) - S(t, g_{2n-2}(t)) \right\|^2 \right)$$

$$+ \frac{c}{2} \left(\left\| g_{2n-1}(t) - S(t, g_{2n-2}(t)) \right\|^2 + \left\| g_{2n-2}(t) - T(t, g_{2n-1}(t)) \right\|^2 \right)$$

(by (1.1))

$$= a \left\| g_{2n-2}(t) - g_{2n-1}(t) \right\|^2$$

$$+ b \left(\left\| g_{2n-1}(t) - g_{2n}(t) \right\|^2 + \left\| g_{2n-2}(t) - g_{2n-1}(t) \right\|^2 \right)$$

$$+ \frac{c}{2} \left(\left\| g_{2n-1}(t) - g_{2n-1}(t) \right\|^2 + \left\| g_{2n-2}(t) - g_{2n}(t) \right\|^2 \right)$$

$$= a \left\| g_{2n-1}(t) - g_{2n-2}(t) \right\|^2$$

$$+ b \left(\left\| g_{2n-1}(t) - g_{2n}(t) \right\|^2 + \left\| g_{2n-2}(t) - g_{2n-1}(t) \right\|^2 \right)$$

$$+ \frac{c}{2} \left(\left\| (g_{2n-2}(t) - g_{2n-1}(t)) + (g_{2n-1}(t) - g_{2n}(t)) \right\|^2 \right)$$

$$\leq a \left\| g_{2n-1}(t) - g_{2n-2}(t) \right\|^2$$

$$+ b \left(\left\| g_{2n-1}(t) - g_{2n}(t) \right\|^2 + \left\| g_{2n-2}(t) - g_{2n-1}(t) \right\|^2 \right)$$

$$+ c \left(\left\| g_{2n-2}(t) - g_{2n-1}(t) \right\|^2 + \left\| g_{2n-1}(t) - g_{2n}(t) \right\|^2 \right)$$

$$- \frac{c}{2} \left\| (g_{2n-2}(t) - g_{2n-1}(t)) - (g_{2n-1}(t) - g_{2n}(t)) \right\|^2$$

(by parallelogram law)

$$\leq (a + b + c) \left\| g_{2n-1}(t) - g_{2n-2}(t) \right\|^2$$

$$+ (b + c) \left\| g_{2n-1}(t) - g_{2n}(t) \right\|^2.$$ \quad (2.3)

Therefore, for all \(t \in \Omega, n = 1, 2, \ldots, \)

$$\left\| g_{2n}(t) - g_{2n-1}(t) \right\|^2 \leq \left(\frac{a + b + c}{1 - b - c} \right) \left\| g_{2n-1}(t) - g_{2n-2}(t) \right\|^2. \quad (2.4)$$
Equations (2.2) and (2.4) jointly imply that for all \(t \in \Omega, n = 1, 2, 3, \ldots, \)
\[
\|g_n(t) - g_{n+1}(t)\|^2 \leq \left(\frac{a + b + c}{1 - b - c} \right) \|g_{n-1}(t) - g_n(t)\|^2.
\] (2.5)

Again from (1.2) it follows that
\[
0 < \left(\frac{a + b + c}{1 - b - c} \right) < 1.
\] (2.6)

From (2.5) and (2.6) it follows that for \(t \in \Omega, \) \(\{g_n(t)\} \) is a Cauchy sequence and hence is convergent in the Hilbert space \(H. \)

For \(t \in \Omega, \) let
\[
\{g_n(t)\} \rightarrow g(t) \quad \text{as} \quad n \rightarrow \infty.
\] (2.7)

Since \(C \) is closed, \(g \) is a function from \(C \) to \(C. \)

For \(t \in \Omega, \)
\[
\|g(t) - S(t, g(t))\|^2 = \|((g(t) - g_{2n}(t)) + (g_{2n}(t) - S(t, g(t))))\|^2
\leq 2\|g(t) - g_{2n}(t)\|^2 + 2\|g_{2n}(t) - S(t, g(t))\|^2
\quad \text{(by parallelogram law)}
= 2\|g(t) - g_{2n}(t)\|^2 + 2\|T(t, g_{2n-1}(t)) - S(t, g(t))\|^2
\quad + 2b \left(\|g_{2n-1}(t) - T(t, g_{2n-1}(t))\|^2 + \|g(t) - S(t, g(t))\|^2 \right)
\quad + c\|g_{2n-1}(t) - S(t, g(t))\|^2 + \|g(t) - Tt, g_{2n-1}(t)\|^2
\quad \text{(by (1.1))}
= 2\|g(t) - g_{2n}(t)\|^2 + 2a\|g_{2n-1}(t) - g(t)\|^2
\quad + 2b \left(\|g_{2n-1}(t) - g_{2n}(t)\|^2 + \|g(t) - S(t, g(t))\|^2 \right)
\quad + c \left(\|g_{2n-1}(t)S(t, g(t))\|^2 + \|g(t) - g_{2n}(t)\|^2 \right).
\] (2.8)

Making \(n \rightarrow \infty \) in the above inequality we have by virtue of (2.7), for all \(t \in \Omega, \)
\[
\|g(t) - St, g(t)\|^2 \leq (2b + c)\|g(t) - S(t, g(t))\|^2.
\] (2.9)

Since \(0 < 2b + c < 1 \) (by (1.2)), we have for all \(t \in \Omega, \)
\[
S(t, g(t)) = g(t).
\] (2.10)

In an exactly similar way we can prove that for all \(t \in \Omega, \)
\[
T(t, g(t)) = g(t).
\] (2.11)
Again, if \(A : \Omega \times C \to C \) is a continuous random operator on a nonempty subset \(C \) of a separable Hilbert space \(H \), then for any measurable function \(f : \Omega \to C \), the function \(h(t) = A(t, f(t)) \) is also measurable [6].

It follows from the construction of \(\{g_n\} \) ((1.4) and (1.5)) and the above considerations that \(\{g_n\} \) is a sequence of measurable functions. From (2.7) it follows that \(g \) is also a measurable function. This fact along with (2.10) and (2.11) shows that \(g : \Omega \to C \) is a common random fixed point of \(S \) and \(T \).

Next we prove the uniqueness. Let \(h : \Omega \to C \) be another random fixed point common to \(S \) and \(T \), that is, for \(t \in \Omega \),

\[
S(t, h(t)) = h(t), \quad T(t, h(t)) = h(t). \tag{2.12}
\]

Then for \(t \in \Omega \),

\[
\|g(t) - h(t)\|^2 = \|S(t, g(t)) - T(t, h(t))\|^2 \\
\leq a \|g(t) - h(t)\|^2 + b \left(\|g(t) - S(t, g(t))\|^2 + \|h(t) - T(t, h(t))\|^2 \right) \\
+ \frac{c}{2} \left(\|g(t) - T(t, h(t))\|^2 + \|h(t) - S(t, g(t))\|^2 \right) \\
= (a + c) \|g(t) - h(t)\|^2 \quad \text{(by (2.12))}. \tag{2.13}
\]

But \(0 < a + c < 1 \) (by (1.2)). This shows that \(g(t) = h(t) \) for all \(t \in \Omega \). This completes the proof of the theorem.

Corollary 2.2. Let \(S, T : C \to C \), where \(C \) is a nonempty closed subset of a Hilbert space \(H \), be such that inequality (1.1) is satisfied along with (1.2). Then the sequence obtained by starting with an arbitrary element

\[
x_0 \in C, \\
x_{2n+1} = Sx_{2n}, \quad n = 0, 1, 2, \ldots, \\
x_{2n+2} = Tx_{2n+1}, \quad n = 0, 1, 2, \ldots,
\]

converges to a unique common fixed point of \(S \) and \(T \).

The proof of the corollary is immediate by assuming \(\Omega \) to be a singleton set.

Remark 2.3. It is necessary to assume \(H \) to be separable in the corollary.

Acknowledgment. This work was supported by a grant from Bengal Engineering College (a Deemed University). The support is gratefully acknowledged.

References

[9] H. K. Xu, *Some random fixed point theorems for condensing and nonexpansive operators*, Proc. Amer. Math. Soc. 110 (1990), no. 2, 395–400.

Binayak S. Choudhury: Department of Mathematics, Bengal Engineering College (Deemed University), Howrah 711103, West Bengal, India
E-mail address: bsc@math.becs.ac.in
Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Deadline</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>September 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru