A NOTE ON OPERATORS OF DELETION AND CONTRACTION FOR ANTICHAINS

ANDREY O. MATVEEV

Received 16 August 2001 and in revised form 28 March 2002

The operators of deletion and contraction for clutters are generalized to those for antichains of finite bounded posets. A generalization of the result by Seymour (1976), describing the relationship between the operators of deletion, contraction, and the blocker map, is considered as a comparison in the lattice of antichains of a poset.

2000 Mathematics Subject Classification: 06A06, 90C27.

1. Introduction. Deletion and contraction are basic operators on clutters. Recall that for a finite nonempty set S, a family of its subsets is called a clutter (or a Sperner family) if no set from that family contains another. Denote by \emptyset the empty subset of S. The clutter \emptyset (containing no sets) and the clutter $\{\emptyset\}$ are called trivial.

Consider a nontrivial clutter \mathcal{G} on the ground set S. Let $x \in S$. Recall that the deletion $\mathcal{G}\setminus x$ and contraction \mathcal{G}/x are the clutters, defined as follows:

\[\mathcal{G}\setminus x = \{G \in \mathcal{G} : G \nsubseteq x\}, \]
\[\mathcal{G}/x = \{\text{inclusion-wise minimal sets of the family } \{G - \{x\} : G \in \mathcal{G}\}\}, \]

on the ground set $S - \{x\}$.

Deletion and contraction are also defined for the trivial clutters

\[\emptyset\setminus x = \emptyset, \quad \{\emptyset\}\setminus x = \{\emptyset\} \]

on the ground set $S - \{x\}$.

If $X = \{x_1, \ldots, x_n\} \subseteq S$, $n \geq 1$, then the deletion $\mathcal{G}\setminus X$ and contraction \mathcal{G}/X are defined in the following way: $\mathcal{G}\setminus X = \mathcal{G}\setminus x_1 \setminus \cdots \setminus x_n$, and $\mathcal{G}/X = \mathcal{G}/x_1 / \cdots / x_n$. Deletions and contractions, sequentially performed on a clutter, produce its minors.

The blocker of a nontrivial clutter \mathcal{G} on the ground set S is the clutter $\mathcal{B}(\mathcal{G})$ on S, consisting of all the inclusion-wise minimal subsets $H \subseteq S$ with the property, for each $G \in \mathcal{G}$, $|H \cap G| \geq 1$.

The blockers of the trivial clutters are defined as follows (see, e.g., [2]):

\[\mathcal{B}(\{\emptyset\}) = \emptyset, \quad \mathcal{B}(\emptyset) = \{\emptyset\}. \]

Seymour described in [4] the relationship between a clutter \mathcal{G} on the ground set S, deletions, contractions, and relevant blockers; if X is a nonempty subset of S then we have

\[\mathcal{B}(\mathcal{G})\setminus X = \mathcal{B}(\mathcal{G}/X), \quad \mathcal{B}(\mathcal{G}/X) = \mathcal{B}(\mathcal{G}\setminus X). \]
Recall that the clutters on S are in natural one-to-one correspondence with the antichains of the Boolean lattice of all subsets of S.

We present in this paper operators of deletion and contraction for antichains of a finite bounded poset. The main results of the paper are Theorems 2.5 and 2.6. Theorem 2.5 states that deletion and contraction for antichains are (co)closure operators on the lattice of antichains of the poset. Theorem 2.6 provides a generalization of result (1.4) to antichains of the poset.

It is a consequence of Theorem 2.6 that equalities (1.4) might be read as

$$\mathcal{B}(Q) \setminus X = \mathcal{B}(Q/X) \leq \mathcal{B}(Q) \leq \mathcal{B}(Q/X) = \mathcal{B}(Q \setminus X),$$

where \leq is a certain comparison that comes from the lattice of antichains of the Boolean lattice of all subsets of S.

2. Deletion and contraction. We refer the reader to [5, Chapter 3] for basic information and terminology in the theory of posets.

We use $\min Q$ to denote the set of all minimal elements of a poset Q. If Q has a least element then it is denoted $\hat{0}_Q$; if Q has a greatest element then it is denoted $\hat{1}_Q$.

Throughout this note, P stands for a finite bounded poset with $|P| > 1$; P^a denotes its atom set, that is the set of all elements covering $\hat{0}_P$. $I(A)$ and $\mathcal{F}(A)$ denote the order ideal and filter of P generated by an antichain A of P, respectively.

We denote the distributive lattice of all antichains of P by $\mathfrak{A}(P)$. If $A_1, A_2 \in \mathfrak{A}(P)$ then we set

$$A_1 \leq A_2 \text{ iff } \mathcal{F}(A_1) \subseteq \mathcal{F}(A_2).$$

(2.1)

The least and greatest elements $\hat{0}_{\mathfrak{A}(P)}$ and $\hat{1}_{\mathfrak{A}(P)}$ of $\mathfrak{A}(P)$ are the trivial antichains $\emptyset \subset P$ and $\{\hat{0}_P\}$, respectively. For the rest of the paper, we denote by \wedge and \vee the operations of meet and join in the lattice $\mathfrak{A}(P)$; if $A_1, A_2 \in \mathfrak{A}(P)$ then

$$A_1 \vee A_2 = \min (A_1 \cup A_2),$$

$$A_1 \wedge A_2 = \min (\mathcal{F}(A_1) \cap \mathcal{F}(A_2)),$$

(2.2)

respectively.

Let A be a nontrivial antichain of P, that is $A \in \mathfrak{A}(P) - \{\hat{0}_{\mathfrak{A}(P)}, \hat{1}_{\mathfrak{A}(P)}\}$. The blocker $\mathfrak{b}(A)$ of A, defined in [3], is the antichain

$$\min \{b \in P : |I(b) \cap I(a) \cap P^a| \geq 1 \forall a \in A\}.$$

(2.3)

The blockers of the trivial antichains are defined as follows:

$$\mathfrak{b}(\hat{0}_{\mathfrak{A}(P)}) = \hat{1}_{\mathfrak{A}(P)}, \quad \mathfrak{b}(\hat{1}_{\mathfrak{A}(P)}) = \hat{0}_{\mathfrak{A}(P)}.$$

(2.4)

For a one-element antichain $\{a\}$ of P, we write $\mathfrak{b}(a)$ instead of $\mathfrak{b}(\{a\})$. If $a \neq \hat{0}_P$ then $\mathfrak{b}(a) = I(a) \cap P^a$, and we have $\{a\} \leq \mathfrak{b}(\mathfrak{b}(a)) \leq \mathfrak{b}(a)$.

If A is a nontrivial antichain of P then its blocker $\mathfrak{b}(A)$ is determined, in particular, by the equality $\mathfrak{b}(A) = \bigwedge_{a \in A} \mathfrak{b}(a)$.

The map $\mathfrak{b} : \mathfrak{A}(P) \to \mathfrak{A}(P)$, reflecting an antichain to its blocker, is the blocker map on $\mathfrak{A}(P)$; it is antitone. The composite map $\mathfrak{b} \circ \mathfrak{b}$ is a closure operator on $\mathfrak{A}(P)$. The
image $b(A(P))$ is called in [3] the lattice of blockers in P and it is denoted $\mathcal{B}(P)$. The restriction $b|_{\mathcal{B}(P)}$ of the blocker map is an anti-automorphism of $\mathcal{B}(P)$. The lattice $\mathcal{B}(P)$ is a meet-subsemilattice of $\mathcal{A}(P)$. For every blocker $B \in \mathcal{B}(P)$, its preimage $b^{-1}(B)$ is a convex join-subsemilattice of $\mathcal{A}(P)$; the greatest element of $b^{-1}(B)$ is $b(B)$.

We start with generalizing the notions of deletion and contraction.

Definition 2.1. Let $X \subseteq P^a, |X| \geq 1$.

(i) If $\{a\}$ is a nontrivial one-element antichain of P then the deletion $\{a\}\setminus X$ and contraction $\{a\}/X$ are the antichains

$$\{a\}\setminus X = \begin{cases} \{a\}, & \text{if } |b(a) \cap X| = 0, \\ \hat{0}_{\mathcal{A}(P)}, & \text{if } |b(a) \cap X| \geq 1, \end{cases}$$

$$\{a\}/X = \begin{cases} \{a\}, & \text{if } |b(a) \cap X| = 0, \\ b(b(a) - X), & \text{if } |b(a) \cap X| \geq 1, b(a) \not\subseteq X, \\ \hat{1}_{\mathcal{A}(P)}, & \text{if } b(a) \subseteq X. \end{cases}$$

(ii) If A is a nontrivial antichain of P then the deletion $A\setminus X$ and contraction A/X are the antichains

$$A\setminus X = \bigvee_{a \in A} (\{a\}\setminus X), \quad A/X = \bigvee_{a \in A} (\{a\}/X).$$

(iii) The deletion and contraction for the trivial antichains of P are

$$\hat{0}_{\mathcal{A}(P)} \setminus X = \hat{0}_{\mathcal{A}(P)}/X = \hat{0}_{\mathcal{A}(P)},$$

$$\hat{1}_{\mathcal{A}(P)} \setminus X = \hat{1}_{\mathcal{A}(P)}/X = \hat{1}_{\mathcal{A}(P)}.$$
\textbf{Lemma 2.3.} If \(A \in \mathcal{A}(P)\) and \(X \subseteq P^n\), \(|X| \geq 1\), then
\[
A \setminus X \leq A \leq A / X. \tag{2.11}
\]

\textbf{Proof.} There is nothing to prove if \(A\) is a trivial antichain. Suppose that \(A\) is non-trivial. With the help of (2.6) and (2.8), we see that \(A \setminus X = \bigvee_{a \in A} (\{a\} \setminus X) \leq \bigvee_{a \in A} \{a\} = A \leq \bigvee_{a \in A} (\{a\} / X) = A / X. \)

If \(\{a\}\) is a nontrivial one-element antichain of \(P\) and \(X \subseteq P^n\), \(|X| \geq 1\), then we obviously have \(\{a\} \setminus X = (\{a\} \setminus X) \setminus X\). The antichain \(\{a\} / X\) has an analogous property. Indeed, if \(|b(a) \cap X| = 0\) or if \(b(a) \subseteq X\) then \((\{a\} / X) / X = \{a\} / X\), due to the definition of contraction. Further, if \(|b(a) \cap X| \geq 1\) and \(b(a) \not\subseteq X\) then, on one hand, we have \((\{a\} / X) / X \geq \{a\} / X\), by Lemma 2.3. On the other hand, for every \(b \in \{a\} / X = b(b(a) / X)\) we have \(b(b) / X \geq b(a) / X\) and, as a consequence, we have \((\{a\} / X) / X = \bigvee_{b \in \{a\} / X} \{b\} / X \leq b(b(a) / X) = \{a\} / X\). We conclude that \((\{a\} / X) / X = \{a\} / X\). In view of (2.6), we can formulate the following lemma.

\textbf{Lemma 2.4.} If \(A \in \mathcal{A}(P)\) and \(X \subseteq P^n\), \(|X| \geq 1\), then
\[
(A \setminus X) / X = A \setminus X, \quad (A / X) / X = A / X. \tag{2.12}
\]

Altogether, Lemmas 2.2, 2.3, and 2.4 describe the connection of the maps \((\setminus X) : \mathcal{A}(P) \to \mathcal{A}(P)\) and \((/ X) : \mathcal{A}(P) \to \mathcal{A}(P)\) with (co)closure operators (see, e.g., [1, Chapter IV]).

\textbf{Theorem 2.5.} Let \(X \subseteq P^n\), \(|X| \geq 1\). The map \((\setminus X)\) is a coclosure operator on \(\mathcal{A}(P)\). The map \((/ X)\) is a closure operator on \(\mathcal{A}(P)\).

Given a nonempty atom subset \(X\), we denote, slightly abusing denotations, the images \((\setminus X)(\mathcal{A}(P)) = \{A \setminus X : A \in \mathcal{A}(P)\}\) and \((/ X)(\mathcal{A}(P)) = \{A / X : A \in \mathcal{A}(P)\}\) by \(\mathcal{A}(P) \setminus X\) and \(\mathcal{A}(P) / X\), respectively. We can interpret well-known properties of (semi)lattice maps and (co)closure operators on lattices in case of maps \((\setminus X)\) and \((/ X)\).

\textbf{Definition 2.1} implies that the maps \((\setminus X), (/ X) : \mathcal{A}(P) \to \mathcal{A}(P)\) are upper \(\hat{0}_{\mathcal{A}(P)}, \hat{1}_{\mathcal{A}(P)}\)-homomorphisms, that is for all \(A_1, A_2 \in \mathcal{A}(P)\), we have \((A_1 \setminus A_2) \setminus X = (A_1 \setminus X) \setminus X = (A_1 \setminus X) / X = (A_1 / X) \setminus X\), \((A_1 \setminus A_2) / X = (A_1 / X) \setminus X\) and \(\hat{0}_{\mathcal{A}(P)} / X = \hat{0}_{\mathcal{A}(P) / X}\). We conclude that \((\setminus X), (/ X)\) are upper \(\hat{0}_{\mathcal{A}(P)}, \hat{1}_{\mathcal{A}(P)}\)-homomorphisms.

The posets \(\mathcal{A}(P) \setminus X\) and \(\mathcal{A}(P) / X\), with the partial orders induced by the partial order on \(\mathcal{A}(P)\), are lattices.

The lattice \(\mathcal{A}(P) / X\) is a join-subsemilattice of \(\mathcal{A}(P)\). Denote by \(\wedge_{\mathcal{A}(P) / X}\) the operation of meet in \(\mathcal{A}(P) / X\). If \(D_1, D_2 \in \mathcal{A}(P) / X\), then we have \(D_1 \wedge_{\mathcal{A}(P) / X} D_2 = (D_1 \wedge D_2) / X\).

The lattice \(\mathcal{A}(P) / X\) is a sublattice of \(\mathcal{A}(P)\).

If \(D \in \mathcal{A}(P) / X\), then the preimage \((\setminus X)^{-1}(D)\) of \(D\) under the map \((\setminus X)\) is the closed interval \([D, D \vee X]\) of \(\mathcal{A}(P)\).

If \(D \in \mathcal{A}(P) / X\), then the preimage \((/ X)^{-1}(D)\) of \(D\) under the map \((/ X)\) is a convex join-subsemilattice of the lattice \(\mathcal{A}(P)\), with the greatest element \(D\).

Equalities (1.4) may be generalized in the context of an arbitrary finite bounded poset. Indeed, let \(A \in \mathcal{A}(P)\) and \(X \subseteq P^n\), \(|X| \geq 1\). We can deduce from Lemma 2.3 that
the comparisons
\[b(A) \setminus X \leq b(A) \leq b(A)/X, \quad b(A/X) \leq b(A) \leq b(A \setminus X) \] (2.13)
hold, and we make an additional conclusion in the following theorem.

Theorem 2.6. If \(A \in \mathcal{A}(P) \) and \(X \subseteq P^a, |X| \geq 1 \), then
\[b(A) \setminus X \leq b(A/X) \leq b(A) \leq b(A/X) \leq b(A \setminus X). \] (2.14)

Proof. There is nothing to prove if the antichain \(A \) is trivial.
If \(A_1, A_2 \) are arbitrary antichains of \(P \) and \(X \subseteq P^a, |X| \geq 1 \), then we can check with the help of routine machinery that
\[(A_1 \land A_2) \setminus X \leq (A_1 \setminus X) \land (A_2 \setminus X), \] (2.15)
\[(A_1 \land A_2)/X \leq (A_1/X) \land (A_2/X). \] (2.16)

Suppose that \(A \) is nontrivial. We prove that \(b(A) \setminus X \leq b(A/X) \). Using comparisons (2.15) and (2.9), we see that
\[b(A) \setminus X = \left(\bigwedge_{a \in A} b(a) \right) \setminus X \leq \bigwedge_{a \in A} \left(b(a) \setminus X \right) = \bigwedge_{a \in A} \left(\bigwedge \{a\}/X \right) = b(A/X). \] (2.17)

We prove that \(b(A)/X \leq b(A \setminus X) \). With the help of (2.16) and (2.9), we see that
\[b(A)/X = \left(\bigwedge_{a \in A} b(a) \right)/X \leq \bigwedge_{a \in A} \left(b(a)/X \right) = \bigwedge_{a \in A} \left(\bigwedge \{a\}/X \right) = b(A \setminus X). \] (2.18)

References

Andrey O. Matveev: Data Center Company, Box 5, Ekaterinburg 620034, Russia
E-mail address: aomatveev@dc.ru
Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>May 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie

Hindawi Publishing Corporation
http://www.hindawi.com